100+ datasets found
  1. Big data and business analytics revenue worldwide 2015-2022

    • statista.com
    Updated Aug 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
    Explore at:
    Dataset updated
    Aug 17, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

  2. Big Data Market Analysis, Size, and Forecast 2025-2029: North America (US...

    • technavio.com
    pdf
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), APAC (Australia, China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Market Size 2025-2029

    The big data market size is valued to increase USD 193.2 billion, at a CAGR of 13.3% from 2024 to 2029. Surge in data generation will drive the big data market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 36% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 55.30 billion in 2023
    By Type - Services segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 193.04 billion
    Market Future Opportunities: USD 193.20 billion
    CAGR from 2024 to 2029 : 13.3%
    

    Market Summary

    In the dynamic realm of business intelligence, the market continues to expand at an unprecedented pace. According to recent estimates, this market is projected to reach a value of USD 274.3 billion by 2022, underscoring its significant impact on modern industries. This growth is driven by several factors, including the increasing volume, variety, and velocity of data generation. Moreover, the adoption of advanced technologies, such as machine learning and artificial intelligence, is enabling businesses to derive valuable insights from their data. Another key trend is the integration of blockchain solutions into big data implementation, enhancing data security and trust.
    However, this rapid expansion also presents challenges, such as ensuring data privacy and security, managing data complexity, and addressing the skills gap. Despite these challenges, the future of the market looks promising, with continued innovation and investment in data analytics and management solutions. As businesses increasingly rely on data to drive decision-making and gain a competitive edge, the importance of effective big data strategies will only grow.
    

    What will be the Size of the Big Data Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Big Data Market Segmented?

    The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud-based
      Hybrid
    
    
    Type
    
      Services
      Software
    
    
    End-user
    
      BFSI
      Healthcare
      Retail and e-commerce
      IT and telecom
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the ever-evolving landscape of data management, the market continues to expand with innovative technologies and solutions. On-premises big data software deployment, a popular choice for many organizations, offers control over hardware and software functions. Despite the high upfront costs for hardware purchases, it eliminates recurring monthly payments, making it a cost-effective alternative for some. However, cloud-based deployment, with its ease of access and flexibility, is increasingly popular, particularly for businesses dealing with high-velocity data ingestion. Cloud deployment, while convenient, comes with its own challenges, such as potential security breaches and the need for companies to manage their servers.

    On-premises solutions, on the other hand, provide enhanced security and control, but require significant capital expenditure. Advanced analytics platforms, such as those employing deep learning models, parallel processing, and machine learning algorithms, are transforming data processing and analysis. Metadata management, data lineage tracking, and data versioning control are crucial components of these solutions, ensuring data accuracy and reliability. Data integration platforms, including IoT data integration and ETL process optimization, are essential for seamless data flow between systems. Real-time analytics, data visualization tools, and business intelligence dashboards enable organizations to make data-driven decisions. Data encryption methods, distributed computing, and data lake architectures further enhance data security and scalability.

    Request Free Sample

    The On-premises segment was valued at USD 55.30 billion in 2019 and showed a gradual increase during the forecast period.

    With the integration of AI-powered insights, natural language processing, and predictive modeling, businesses can unlock valuable insights from their data, improving operational efficiency and driving growth. A recent study reveals that the market is projected to reach USD 274.3 billion by 2022, underscoring its growing importance in today's data-driven economy. This continuous evolution of big data technologies and solutions underscores the need for robust data governa

  3. Data from: Big Data versus a Survey

    • clevelandfed.org
    Updated Dec 31, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2014). Big Data versus a Survey [Dataset]. https://www.clevelandfed.org/publications/working-paper/2014/wp-1440-big-data-versus-a-survey
    Explore at:
    Dataset updated
    Dec 31, 2014
    Dataset authored and provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Description

    Economists are shifting attention and resources from work on survey data towork on “big data.” This analysis is an empirical exploration of the trade-offs this transition requires. Parallel models are estimated using the Federal Reserve Bank of New York Consumer Credit Panel/Equifax and the Survey of Consumer Finances. After adjustments to account for different variable definitions and sampled populations, it is possible to arrive at similar models of total household debt. However, the estimates are sensitive to the adjustments. Little similarity is observed in parallel models of nonmortgage debt. While surveys intentionally collect theoretically related variables, it may be necessary to merge external data into commercial big data. In this example, some education and income measures are successfully integrated with the big data, but other external aggregates fail to adequately substitute for survey responses. Big data offers sample sizes, frequencies, and details that surveys cannot match. However, this example illustrates why caution is appropriate when attempting to substitute big data for a carefully executed survey.

  4. G

    Big Data Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Big Data Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/big-data-analytics-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analytics Market Outlook



    According to our latest research, the global Big Data Analytics market size reached USD 318.5 billion in 2024, reflecting robust adoption across various industries. The market is poised to grow at a CAGR of 13.2% from 2025 to 2033, and is forecasted to attain a value of USD 857.4 billion by 2033. This remarkable expansion is driven by the escalating volume of data generated worldwide, the proliferation of digital transformation initiatives, and the increasing demand for actionable business intelligence. As organizations continue to leverage advanced analytics to gain competitive advantages, the Big Data Analytics market is set for unprecedented growth in the coming years.




    The primary growth factor fueling the Big Data Analytics market is the exponential increase in data generation from diverse sources such as social media, IoT devices, enterprise applications, and cloud platforms. Organizations are increasingly recognizing the value of harnessing this vast data to uncover patterns, trends, and actionable insights that can drive strategic decision-making. The integration of artificial intelligence (AI) and machine learning (ML) with Big Data Analytics has further enhanced the capability to extract predictive and prescriptive insights, thereby optimizing operations, improving customer experiences, and enabling innovative business models. The need for real-time analytics and the ability to process unstructured data have also contributed significantly to market growth, as businesses seek to remain agile and responsive in a rapidly evolving digital landscape.




    Another critical driver for the Big Data Analytics market is the rapid adoption of cloud computing technologies, which provide scalable and cost-effective platforms for storing and analyzing large volumes of data. Cloud-based analytics solutions offer flexibility, ease of deployment, and seamless integration with existing IT infrastructures, making them highly attractive to organizations of all sizes. The emergence of hybrid and multi-cloud environments has further facilitated the adoption of Big Data Analytics, allowing enterprises to leverage the best features of public and private clouds while ensuring data security and compliance. Additionally, the growing emphasis on data-driven decision making in sectors such as healthcare, BFSI, retail, and manufacturing is accelerating investments in advanced analytics solutions, contributing to sustained market expansion.




    The increasing focus on regulatory compliance and data privacy is also shaping the growth trajectory of the Big Data Analytics market. Organizations are required to adhere to stringent regulations such as GDPR, HIPAA, and CCPA, necessitating robust data governance frameworks and secure analytics platforms. This has led to the development of sophisticated analytics tools that not only deliver actionable insights but also ensure data integrity, confidentiality, and compliance with global standards. Furthermore, the emergence of edge analytics and the integration of Big Data Analytics with IoT and blockchain technologies are opening new avenues for innovation, enabling real-time monitoring, predictive maintenance, and enhanced operational efficiency across industries.




    From a regional perspective, North America continues to dominate the Big Data Analytics market owing to the presence of leading technology providers, high digital adoption rates, and substantial investments in advanced analytics solutions. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid digitization, increasing internet penetration, and the proliferation of connected devices. Europe is also making significant strides, particularly in industries such as manufacturing, healthcare, and financial services, where data-driven insights are critical for operational excellence and regulatory compliance. The Middle East & Africa and Latin America are gradually catching up, fueled by government initiatives, infrastructure development, and the rising adoption of cloud-based analytics solutions.





    <h2 id='component-analysis' &g

  5. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2018). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027. What is Big data? Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. Big data analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  6. Big Data Security Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Security Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, Spain, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-security-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Big Data Security Market Size 2025-2029

    The big data security market size is forecast to increase by USD 23.9 billion, at a CAGR of 15.7% between 2024 and 2029. Stringent regulations regarding data protection will drive the big data security market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 37% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 10.91 billion in 2023
    By End-user - Large enterprises segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 188.34 billion
    Market Future Opportunities: USD USD 23.9 billion 
    CAGR : 15.7%
    North America: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving landscape, with stringent regulations driving the demand for advanced data protection solutions. As businesses increasingly rely on big data to gain insights and drive growth, the focus on securing this valuable information has become a top priority. The core technologies and applications underpinning big data security include encryption, access control, and threat detection, among others. These solutions are essential as the volume and complexity of data continue to grow, posing significant challenges for organizations. The service types and product categories within the market include managed security services, software, and hardware. Major companies, such as IBM, Microsoft, and Cisco, dominate the market with their comprehensive offerings. However, the market is not without challenges, including the high investments required for implementing big data security solutions and the need for continuous updates to keep up with evolving threats. Looking ahead, the forecast timeline indicates steady growth for the market, with adoption rates expected to increase significantly. According to recent estimates, The market is projected to reach a market share of over 50% by 2025. As the market continues to unfold, related markets such as the Cloud Security and Cybersecurity markets will also experience similar trends.

    What will be the Size of the Big Data Security Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Big Data Security Market Segmented and what are the key trends of market segmentation?

    The big data security industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloud-basedEnd-userLarge enterprisesSMEsSolutionSoftwareServicesGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalySpainUKAPACChinaIndiaJapanRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    The market trends encompass various advanced technologies and strategies that businesses employ to safeguard their valuable data. Threat intelligence platforms analyze potential risks and vulnerabilities, enabling proactive threat detection and response. Data encryption methods secure data at rest and in transit, ensuring confidentiality. Security automation tools streamline processes, reducing manual efforts and minimizing human error. Data masking techniques and tokenization processes protect sensitive information by obfuscating or replacing it with non-sensitive data. Vulnerability management tools identify and prioritize risks, enabling remediation. Federated learning security ensures data privacy in collaborative machine learning environments. Real-time threat detection and data breaches prevention employ anomaly detection algorithms and artificial intelligence security to identify and respond to threats. Access control mechanisms and security incident response systems manage and mitigate unauthorized access and data breaches. Security orchestration automation, machine learning security, and big data anonymization techniques enhance security capabilities. Risk assessment methodologies and differential privacy techniques maintain data privacy while enabling data usage. Homomorphic encryption schemes and blockchain security implementations provide advanced data security. Behavioral analytics security monitors user behavior and identifies anomalous activities. Compliance regulations and data privacy regulations mandate adherence to specific security standards. Zero trust architecture and network security monitoring ensure continuous security evaluation and response. Intrusion detection systems and data governance frameworks further strengthen security posture. According to recent studies, the market has experienced a significant 25.6% increase in adoption. Furthermore, industry experts anticipate a 31.8% expansion in the market's size ove

  7. Big Data Analytics in Energy Sector - Analysis & Companies

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Big Data Analytics in Energy Sector - Analysis & Companies [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-in-energy-sector-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Big Data Analytics Market in Energy Sector Report is Segmented by Application (Grid Operations, Smart Metering, Asset and Workforce Management, Predictive Maintenance and APM, and More), Component (Software, and Services), Deployment Model (On-Premise, Cloud, and Hybrid), End-User (Power Utilities, Oil Exploration and Production, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  8. G

    Big Data Analytics in BFSI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Big Data Analytics in BFSI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/big-data-analytics-in-bfsi-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analytics in BFSI Market Outlook



    As per our latest research, the global Big Data Analytics in BFSI market size reached USD 22.7 billion in 2024, driven by the increasing digital transformation initiatives and the accelerating adoption of advanced analytics across financial institutions. The market is expected to grow at a robust CAGR of 14.8% during the forecast period, reaching an estimated USD 62.5 billion by 2033. The rapid proliferation of digital banking, heightened focus on fraud detection, and the need for personalized customer experiences are among the primary growth drivers for the Big Data Analytics in BFSI market.




    The exponential growth of data generated by financial transactions, customer interactions, and regulatory requirements has created an urgent need for advanced analytics solutions in the BFSI sector. Financial institutions are leveraging Big Data Analytics to gain actionable insights, optimize operations, and enhance decision-making processes. The integration of artificial intelligence and machine learning with Big Data Analytics platforms is enabling BFSI organizations to automate risk assessment, predict customer behavior, and streamline compliance procedures. Furthermore, the surge in digital payment platforms and online banking services has resulted in an unprecedented volume of structured and unstructured data, further necessitating robust analytics solutions to ensure data-driven strategies and operational efficiency.




    Another significant growth factor is the increasing threat of cyberattacks and financial fraud. As digital channels become more prevalent, BFSI organizations face sophisticated threats that require advanced analytics for real-time detection and mitigation. Big Data Analytics empowers financial institutions to monitor vast datasets, identify unusual patterns, and respond proactively to potential security breaches. Additionally, regulatory bodies are imposing stringent data management and compliance standards, compelling BFSI firms to adopt analytics solutions that ensure transparency, auditability, and adherence to global regulations. This regulatory push, combined with the competitive need to offer innovative, customer-centric services, is fueling sustained investment in Big Data Analytics across the BFSI landscape.




    The growing emphasis on customer-centricity is also propelling the adoption of Big Data Analytics in the BFSI sector. Financial institutions are increasingly utilizing analytics to understand customer preferences, segment markets, and personalize product offerings. This not only enhances customer satisfaction and loyalty but also drives cross-selling and upselling opportunities. The ability to analyze diverse data sources, including social media, transaction histories, and customer feedback, allows BFSI organizations to predict customer needs and deliver targeted solutions. As a result, Big Data Analytics is becoming an indispensable tool for BFSI enterprises aiming to differentiate themselves in an intensely competitive market.




    From a regional perspective, North America remains the largest market for Big Data Analytics in BFSI, accounting for over 38% of global revenue in 2024. This dominance is attributed to the presence of major financial institutions, early adoption of advanced technologies, and a mature regulatory environment. However, the Asia Pacific region is witnessing the fastest growth, with a CAGR exceeding 17% during the forecast period, driven by rapid digitization, expanding banking infrastructure, and increasing investments in analytics solutions by emerging economies such as China and India.





    Component Analysis



    The Big Data Analytics in BFSI market is segmented by component into Software and Services. The software segment comprises analytics platforms, data management tools, visualization software, and advanced AI-powered solutions. In 2024, the software segment accounted for the largest share

  9. Global IT spending 2005-2024

    • statista.com
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Sherif (2025). Global IT spending 2005-2024 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Ahmed Sherif
    Description

    IT spending worldwide is projected to reach over 5.7 trillion U.S. dollars in 2025, over a nine percent increase on 2024 spending. Smaller companies spending a greater share on hardware According to the results of a survey, hardware projects account for a fifth of IT budgets across North America and Europe. Larger companies tend to allocate a smaller share of their budget to hardware projects. Companies employing between one and 99 people allocated 31 percent of the budget to hardware, compared with 29 percent in companies of five thousand people or more. This could be explained by the greater need to spend money on managed services in larger companies. Not all companies can reduce their spending While COVID-19 has the overall effect of reducing IT spending, not all companies will face the same experiences. Setting up employees to comfortably work from home can result in unexpected costs, as can adapting to new operational requirements. In a recent survey of IT buyers, 18 percent of the respondents said they expected their IT budgets to increase in 2020. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  10. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  11. Big Data use by companies by sector in France 2015

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Big Data use by companies by sector in France 2015 [Dataset]. https://www.statista.com/statistics/770505/big-data-business-use-by-sector-la-france/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    France
    Description

    This chart highlights the percentage of companies using Big Data data in France in 2015, by sector of activity. It can be seen that in the transport sector, a quarter of the companies surveyed reported using big data, also known as "big data." The concept of big data refers to large volumes of data related to use of a good or a service, for example a social network. Being able to process large volumes of data is a significant business issue, as it allows them to better understand how users behave in a service, making them better able to meet user expectations.

  12. D

    Earth Observation Big Data Service Market Report | Global Forecast From 2025...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Earth Observation Big Data Service Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-earth-observation-big-data-service-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Earth, Global
    Description

    Earth Observation Big Data Service Market Outlook



    As of 2023, the global market size for Earth Observation Big Data Services is estimated at approximately $8.5 billion, and it is projected to reach $18.7 billion by 2032, growing at a CAGR of 9.1% during the forecast period. This robust growth can be attributed to several factors, including advancements in satellite technology, increasing demand for real-time data analysis, and the growing application of big data analytics across various industries.



    The primary growth factor driving the Earth Observation Big Data Service market is the significant advancements in satellite technologies. The development of high-resolution imaging satellites and the launch of numerous small satellites (CubeSats) have revolutionized the way data is captured and utilized from space. These advancements have enhanced the accuracy and frequency of Earth observation data, making it more beneficial for diverse applications such as climate monitoring, agriculture, and disaster management. Additionally, the decreasing cost of launching satellites has made it more accessible for various sectors to leverage Earth observation data, thereby broadening the market's scope.



    Another crucial growth factor is the increasing demand for real-time data analysis. In today's data-driven world, organizations across various sectors require timely and accurate information to make informed decisions. Earth observation data, when combined with big data analytics, provides insightful and actionable information that can be used for immediate decision-making. For example, in agriculture, real-time data on weather conditions, soil moisture, and crop health can significantly enhance yield and efficiency. Similarly, in disaster management, real-time data on natural calamities can drastically improve response times and mitigate damage. This demand for real-time data analysis is expected to propel the market further.



    The growing application of big data analytics in various industries is also a significant driver of the Earth Observation Big Data Service market. Industries such as agriculture, forestry, urban planning, and defense are increasingly leveraging big data analytics to optimize operations, reduce costs, and improve decision-making. In the defense sector, for instance, big data analytics is used for surveillance, reconnaissance, and intelligence gathering, which are vital for national security. The integration of advanced analytics with Earth observation data has opened new frontiers for innovation and efficiency, thus driving market growth.



    The rise of Commercial Satellite Imaging has played a pivotal role in the evolution of Earth Observation Big Data Services. By providing high-resolution images of the Earth's surface, commercial satellites have enabled a more detailed and comprehensive understanding of various geographical and environmental phenomena. This capability is not only beneficial for scientific research but also for practical applications such as urban planning, agriculture, and disaster management. The accessibility of commercial satellite data has democratized the use of satellite imagery, allowing a wider range of industries to leverage this technology for enhanced decision-making and strategic planning.



    Regional outlook for the Earth Observation Big Data Service market indicates significant growth across all major regions, with North America and Europe leading the charge due to their advanced technological infrastructure and substantial investments in satellite technology. Asia Pacific is expected to witness the highest growth rate, driven by rapid industrialization and increasing governmental focus on space programs. Latin America and the Middle East & Africa are also anticipated to show considerable growth, albeit at a slower pace compared to other regions.



    Service Type Analysis



    The Earth Observation Big Data Service market is segmented by service type into Data Acquisition, Data Processing, Data Analysis, and Data Visualization. Data Acquisition involves the collection of raw data from various satellite sources. This segment is critical as it forms the foundation upon which other services build. The advancements in satellite technology and the proliferation of CubeSats have made data acquisition more efficient and frequent, enhancing the overall quality and quantity of data collected.



    Data Processing is the next crucial segment, involving the transformatio

  13. Sources of Big Data used by companies by sector in France 2015

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Sources of Big Data used by companies by sector in France 2015 [Dataset]. https://www.statista.com/statistics/771189/sources-big-data-business-use-by-sector-france/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    France
    Description

    This graph shows the types of sources used by companies using Big Data in France in 2015, according to the sector. According to the source, ** percent of companies in the transport sector used geolocation data. In the area of ​​accommodation and food services, three-quarters of the companies surveyed reported using social media data. The Big Data concept refers to large volumes of data related to usage a good or a service, for example a social network or a connected object such as a GPS. Being able to handle large volumes of data is a big business challenge, as it allows them to better understand how service users behave, making them better able to meet user expectations.

  14. Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Ireland, and UK), APAC (China, India, and Philippines), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-spending-market-in-healthcare-sector-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada
    Description

    Snapshot img

    Big Data Spending In Healthcare Sector Market Size 2025-2029

    The big data spending in healthcare sector market size is valued to increase by USD 7.78 billion, at a CAGR of 10.2% from 2024 to 2029. Need to improve business efficiency will drive the big data spending in healthcare sector market.

    Market Insights

    APAC dominated the market and accounted for a 31% growth during the 2025-2029.
    By Service - Services segment was valued at USD 5.9 billion in 2023
    By Type - Descriptive analytics segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 108.28 million 
    Market Future Opportunities 2024: USD 7783.80 million
    CAGR from 2024 to 2029 : 10.2%
    

    Market Summary

    The healthcare sector's adoption of big data analytics is a global trend that continues to gain momentum, driven by the need to improve business efficiency, enhance patient care, and ensure regulatory compliance. Big data in healthcare refers to the large and complex data sets generated from various sources, including Electronic Health Records, medical devices, and patient-generated data. This data holds immense potential for identifying patterns, predicting outcomes, and driving evidence-based decision-making. One real-world scenario illustrating this is supply chain optimization. Hospitals and healthcare providers can leverage big data analytics to optimize their inventory management, reduce wastage, and ensure timely availability of essential medical supplies.
    For instance, predictive analytics can help anticipate demand for specific medical equipment or supplies, enabling healthcare providers to maintain optimal stock levels and minimize the risk of stockouts or overstocking. However, the adoption of big data analytics in healthcare is not without challenges. Data privacy and security concerns related to patients' medical data are a significant concern, with potential risks ranging from data breaches to unauthorized access. Ensuring robust Data security measures and adhering to regulatory guidelines, such as the Health Insurance Portability and Accountability Act (HIPAA) in the US, is essential for maintaining trust and protecting sensitive patient information.
    In conclusion, the use of big data analytics in healthcare is a transformative trend that offers numerous benefits, from improved operational efficiency to enhanced patient care and regulatory compliance. However, it also presents challenges related to data privacy and security, which must be addressed to fully realize the potential of this technology.
    

    What will be the size of the Big Data Spending In Healthcare Sector Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    The market continues to evolve, with recent research indicating a significant increase in investments. This growth is driven by the need for improved patient care, regulatory compliance, and cost savings. One trend shaping the market is the adoption of advanced analytics techniques to gain insights from large datasets. For instance, predictive analytics is being used to identify potential health risks and improve patient outcomes.
    Additionally, data visualization software and data analytics platforms are essential tools for healthcare organizations to make data-driven decisions. Compliance is another critical area where big data is making a significant impact. With the increasing amount of patient data being generated, there is a growing need for data security and privacy. Data encryption methods and data anonymization techniques are being used to protect sensitive patient information. Budgeting is also a significant consideration for healthcare organizations investing in big data. Cost benefit analysis and statistical modeling are essential tools for evaluating the return on investment of big data initiatives.
    As healthcare organizations continue to invest in big data, they must balance the benefits against the costs to ensure they are making informed decisions. In conclusion, the market is experiencing significant growth, driven by the need for improved patient care, regulatory compliance, and cost savings. The adoption of advanced analytics techniques, data visualization software, and data analytics platforms is essential for healthcare organizations to gain insights from large datasets and make data-driven decisions. Additionally, data security and privacy are critical considerations, with data encryption methods and data anonymization techniques being used to protect sensitive patient information.
    Budgeting is also a significant consideration, with cost benefit analysis and statistical modeling essential tools for evaluating the return on investment of big data initiatives.
    

    Unpacking the Big Data Spending In Healthcare Sector Market Landscape

    In the dynamic healthcare sector, the adoption of big data technologies has become a st

  15. r

    Big Data in Healthcare Market Size, Growth Trends 2035

    • rootsanalysis.com
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2025). Big Data in Healthcare Market Size, Growth Trends 2035 [Dataset]. https://www.rootsanalysis.com/reports/big-data-in-healthcare-market.html
    Explore at:
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Description

    The big data in healthcare market size is estimated to grow from USD 78 billion in 2024 to USD 540 billion by 2035, representing a CAGR of 19.20% till 2035

  16. Growth rate of big data market in China 2018-2022

    • statista.com
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Growth rate of big data market in China 2018-2022 [Dataset]. https://www.statista.com/statistics/1284407/china-growth-rate-of-big-data-industry/
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2022, China's big data industry grew by almost ** percent compared to the previous year, exceeding a market size of *** trillion yuan. The Chinese government has plans to transform the country into a global technology leader and big data is one important vector in this development.

  17. l

    Spatiotemporal Big Data Store Tutorial

    • visionzero.geohub.lacity.org
    Updated Mar 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoEventTeam (2016). Spatiotemporal Big Data Store Tutorial [Dataset]. https://visionzero.geohub.lacity.org/documents/870b1bf0ad17472497b84b528cb9af00
    Explore at:
    Dataset updated
    Mar 19, 2016
    Dataset authored and provided by
    GeoEventTeam
    Description

    The Spatiotemporal Big Data Store Tutorial introduces you the the capabilities of the spatiotemporal big data store in ArcGIS Data Store, available with ArcGIS Enterprise. Observation data can be moving objects, changing attributes of stationary sensors, or both. The spatiotemporal big data store enables archival of high volume observation data, sustains high velocity write throughput, and can run across multiple machines (nodes). Adding additional machines adds capacity, enabling you to store more data, implement longer retention policies of your data, and support higher data write throughput.

    After completing this tutorial you will:

    Understand the concepts and best practices for working with the spatiotemporal big data store available with ArcGIS Data Store. Have configured the appropriate security settings and certificates on a enterprise server, real-time server, and a data server which are necessary for working with the spatiotemporal big data store. Have learned how to process and archive large amounts of observational data in the spatiotemporal big data store. Have learned how to visualize the observational data that is stored in the spatiotemporal big data store.

    Releases
    

    Each release contains a tutorial compatible with the version of GeoEvent Server listed. The release of the component you deploy does not have to match your version of ArcGIS GeoEvent Server, so long as the release of the component is compatible with the version of GeoEvent Server you are using. For example, if the release contains a tutorial for version 10.6; this tutorial is compatible with ArcGIS GeoEvent Server 10.6 and later. Each release contains a Release History document with a compatibility table that illustrates which versions of ArcGIS GeoEvent Server the component is compatible with.

    NOTE: The release strategy for ArcGIS GeoEvent Server components delivered in the ArcGIS GeoEvent Server Gallery has been updated. Going forward, a new release will only be created when

      a component has an issue,
      is being enhanced with new capabilities,
      or is not compatible with newer versions of ArcGIS GeoEvent Server.
    
    This strategy makes upgrades of these custom
    components easier since you will not have to
    upgrade them for every version of ArcGIS GeoEvent Server
    unless there is a new release of
    the component. The documentation for the
    latest release has been
    updated and includes instructions for updating
    your configuration to align with this strategy.
    

    Latest

    Release 4 - February 2, 2017 - Compatible with ArcGIS GeoEvent Server 10.5 and later.

    Previous

    Release 3 - July 7, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.

    Release 2 - May 17, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.

    Release 1 - March 18, 2016 - Compatible with ArcGIS GeoEvent Server 10.4 thru 10.8.

  18. Small Sample- Big Data: The Gambia

    • data.niaid.nih.gov
    • immport.org
    • +1more
    url
    Updated Apr 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ofer Levy (2019). Small Sample- Big Data: The Gambia [Dataset]. http://doi.org/10.21430/M3IXMI1PCO
    Explore at:
    urlAvailable download formats
    Dataset updated
    Apr 12, 2019
    Dataset provided by
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    Authors
    Ofer Levy
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Area covered
    The Gambia
    Description

    To enable characterization of the molecular ontogeny in early life, we developed a robust experimental and analytical approach that applies system biology tools to peripheral blood samples from human newborns

  19. A sample medical dataset.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farough Ashkouti; Keyhan Khamforoosh (2023). A sample medical dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0285212.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Farough Ashkouti; Keyhan Khamforoosh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recently big data and its applications had sharp growth in various fields such as IoT, bioinformatics, eCommerce, and social media. The huge volume of data incurred enormous challenges to the architecture, infrastructure, and computing capacity of IT systems. Therefore, the compelling need of the scientific and industrial community is large-scale and robust computing systems. Since one of the characteristics of big data is value, data should be published for analysts to extract useful patterns from them. However, data publishing may lead to the disclosure of individuals’ private information. Among the modern parallel computing platforms, Apache Spark is a fast and in-memory computing framework for large-scale data processing that provides high scalability by introducing the resilient distributed dataset (RDDs). In terms of performance, Due to in-memory computations, it is 100 times faster than Hadoop. Therefore, Apache Spark is one of the essential frameworks to implement distributed methods for privacy-preserving in big data publishing (PPBDP). This paper uses the RDD programming of Apache Spark to propose an efficient parallel implementation of a new computing model for big data anonymization. This computing model has three-phase of in-memory computations to address the runtime, scalability, and performance of large-scale data anonymization. The model supports partition-based data clustering algorithms to preserve the λ-diversity privacy model by using transformation and actions on RDDs. Therefore, the authors have investigated Spark-based implementation for preserving the λ-diversity privacy model by two designed City block and Pearson distance functions. The results of the paper provide a comprehensive guideline allowing the researchers to apply Apache Spark in their own researches.

  20. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
Organization logo

Big data and business analytics revenue worldwide 2015-2022

Explore at:
38 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 17, 2021
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

Search
Clear search
Close search
Google apps
Main menu