MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by ultimatum_game
Released under MIT
The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.
What is Big data?
Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.
Big data analytics
Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.
This is a test collection for passage and document retrieval, produced in the TREC 2023 Deep Learning track. The Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).Certain machine learning based methods, such as methods based on deep learning are known to require very large datasets for training. Lack of such large scale datasets has been a limitation for developing such methods for common information retrieval tasks, such as document ranking. The Deep Learning Track organized in the previous years aimed at providing large scale datasets to TREC, and create a focused research effort with a rigorous blind evaluation of ranker for the passage ranking and document ranking tasks.Similar to the previous years, one of the main goals of the track in 2022 is to study what methods work best when a large amount of training data is available. For example, do the same methods that work on small data also work on large data? How much do methods improve when given more training data? What external data and models can be brought in to bear in this scenario, and how useful is it to combine full supervision with other forms of supervision?The collection contains 12 million web pages, 138 million passages from those web pages, search queries, and relevance judgments for the queries.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Here are a few use cases for this project:
Marathon Management: This model can be used in analyzing photos or videos from marathons or races. By recognizing bibs and participants, it can automate the task of identifying participants, ranking them, and detecting any possible issues like race fraud.
Retail and Fashion Industry: The ability to accurately identify clothing items such as shirts, hats, and shoes can assist in creating AI-driven fashion apps. Users could use these apps to find similar items for purchase, or even virtually try on items.
Sport Event Analytics: This model can be implemented in video analysis systems to distinguish between different roles in sports events. For example, it could recognize a referee by their specific bib, helping to automate the process of gathering game statistics.
Surveillance Systems: The detection of specific items such as clothing, hats, bibs, and shoes can improve the information obtained from security camera footage. It can be used for crowd control, identification of individuals, or anomaly detection in video surveillance.
Content Categorising in Social Media Platforms: This AI can be used by social media platforms for content categorizing and ad targeting. For example, recognizing a person's clothing and accessories in their photos can give indicators about their fashion preferences, leading to more personalized advertising.
The global big data and business analytics (BDA) market was valued at 168.8 billion U.S. dollars in 2018 and is forecast to grow to 215.7 billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around 85 billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate 79.4 ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around 16.5 billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10
Data Science Platform Market Size 2025-2029
The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection.
Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.
How is this Data Science Platform Industry segmented?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please also see the latest version of the repository: |
The explosion in the volume of biological imaging data challenges the available technologies for data interrogation and its intersection with related published bioinformatics data sets. Moreover, intersection of highly rich and complex datasets from different sources provided as flat csv files requires advanced informatics skills, which is time consuming and not accessible to all. Here, we provide a “user manual” to our new paradigm for systematically filtering and analysing a dataset with more than 1300 microscopy data figures using Multi-Dimensional Viewer (MDV) -link, a solution for interactive multimodal data visualisation and exploration. The primary data we use are derived from our published systematic analysis of 200 YFP traps reveals common discordance between mRNA and protein across the nervous system (eprint link). This manual provides the raw image data together with the expert annotations of the mRNA and protein distribution as well as associated bioinformatics data. We provide an explanation, with specific examples, of how to use MDV to make the multiple data types interoperable and explore them together. We also provide the open-source python code (github link) used to annotate the figures, which could be adapted to any other kind of data annotation task.
Here you find an example research data dataset for the automotive demonstrator within the "AEGIS - Advanced Big Data Value Chain for Public Safety and Personal Security" big data project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732189. The time series data has been collected during trips conducted by three drivers driving the same vehicle in Austria. The dataset contains 20Hz sampled CAN bus data from a passenger vehicle, e.g. WheelSpeed FL (speed of the front left wheel), SteerAngle (steering wheel angle), Role, Pitch, and accelerometer values per direction. GPS data from the vehicle (see signals 'Latitude_Vehicle' and 'Longitude_Vehicle' in h5 group 'Math') and GPS data from the IMU device (see signals 'Latitude_IMU', 'Longitude_IMU' and 'Time_IMU' in h5 group 'Math') are included. However, as it had to be exported with single-precision, we lost some precision for those GPS values. For data analysis we use R and R Studio (https://www.rstudio.com/) and the library h5. e.g. check file with R code: library(h5) f <- h5file("file path/20181113_Driver1_Trip1.hdf") summary(f["CAN/Yawrate1"][,]) summary(f["Math/Latitude_IMU"][,]) h5close(f)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We introduce a large-scale dataset of the complete texts of free/open source software (FOSS) license variants. To assemble it we have collected from the Software Heritage archive—the largest publicly available archive of FOSS source code with accompanying development history—all versions of files whose names are commonly used to convey licensing terms to software users and developers. The dataset consists of 6.5 million unique license files that can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. Additional metadata about shipped license files are also provided, making the dataset ready to use in various contexts; they include: file length measures, detected MIME type, detected SPDX license (using ScanCode), example origin (e.g., GitHub repository), oldest public commit in which the license appeared. The dataset is released as open data as an archive file containing all deduplicated license blobs, plus several portable CSV files for metadata, referencing blobs via cryptographic checksums.
For more details see the included README file and companion paper:
Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.
If you use this dataset for research purposes, please acknowledge its use by citing the above paper.
These datasets contain peer-to-peer trades from various recommendation platforms.
Metadata includes
peer-to-peer trades
have and want lists
image data (tradesy)
From website:
Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.
Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.
This is a community data set of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Area-averaged forcing data for the period 1980 to 2014 was generated for three basin spatial configurations (with variable spatial resolution) - basin mean, hydrologic response units (HRUs) and elevation bands - by mapping daily, gridded meteorological data sets to the subbasin (Daymet) and basin polygons (Daymet, Maurer and NLDAS). Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this dataset is to (1) be available for community use and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting Model, calibrated using the shuffled complex evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash-Sutcliffe efficiency scores >=0.55 for the calibration period and 34% >= 0.8. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow and, for a given aridity, fewer extreme error days are present as the basin snow water equivalent increases.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The Big Data Analytics in Banking market size was valued at approximately USD 23.5 billion in 2023, and it is projected to grow to USD 67.2 billion by 2032, showcasing a robust CAGR of 12.3%. This exponential growth is driven by the increasing demand for more refined data analysis tools that enable banks to manage vast amounts of information and derive actionable insights. The banking sector is increasingly acknowledging the need for advanced analytics to enhance decision-making processes, improve customer satisfaction, and mitigate risks. Factors such as digital transformation, regulatory pressure, and the need for operational efficiency continue to propel the market forward.
One of the primary growth factors in the Big Data Analytics in Banking market is the heightened emphasis on risk management. Banks are continuously exposed to various risks, including credit, market, operational, and liquidity risks. Big Data Analytics plays a crucial role in identifying, measuring, and mitigating these risks. By analyzing large volumes of structured and unstructured data, banks can gain insights into potential risk factors and develop strategies to address them proactively. Furthermore, regulatory requirements mandating more stringent risk management practices have compelled banks to invest in sophisticated analytics solutions, further contributing to market growth.
Another significant driver of this market is the increasing need for enhanced customer analytics. With the rise of digital banking and fintech solutions, customers now demand more personalized services and experiences. Big Data Analytics enables banks to understand customer behavior, preferences, and needs by analyzing transaction histories, social media interactions, and other data sources. By leveraging these insights, banks can offer tailored products and services, improve customer retention rates, and gain a competitive edge in the market. Additionally, customer analytics helps banks identify cross-selling and up-selling opportunities, thereby driving revenue growth.
Fraud detection is also a critical area where Big Data Analytics has made a significant impact in the banking sector. The increasing complexity and frequency of financial frauds necessitate the adoption of advanced analytics solutions to detect and prevent fraudulent activities effectively. Big Data Analytics allows banks to analyze vast amounts of transaction data in real-time, identify anomalies, and flag suspicious activities. By employing machine learning algorithms, banks can continuously improve their fraud detection capabilities, minimizing financial losses and enhancing security for their customers. This ongoing investment in fraud detection tools is expected to contribute significantly to the growth of the Big Data Analytics in Banking market.
Data Analytics In Financial services is revolutionizing the way banks operate by providing deeper insights into financial trends and customer behaviors. This transformative approach enables financial institutions to analyze vast datasets, uncovering patterns and correlations that were previously inaccessible. By leveraging data analytics, banks can enhance their financial forecasting, optimize asset management, and improve investment strategies. The integration of data analytics in financial operations not only aids in risk assessment but also supports regulatory compliance by ensuring accurate and timely reporting. As the financial sector continues to evolve, the role of data analytics becomes increasingly pivotal in driving innovation and maintaining competitive advantage.
Regionally, North America remains a dominant player in the Big Data Analytics in Banking market, driven by the presence of major banking institutions and technology firms. The region's early adoption of advanced technologies and a strong focus on regulatory compliance have been pivotal in driving market growth. Europe follows closely, with stringent regulatory frameworks like GDPR necessitating advanced data management and analytics solutions. In the Asia Pacific region, rapid digital transformation and the growing adoption of mobile banking are key factors propelling the market forward. The Middle East & Africa and Latin America, while currently smaller markets, are experiencing steady growth as banks in these regions increasingly invest in analytics solutions to enhance their competitive positioning.
In the Big Data Analytics in
https://brightdata.com/licensehttps://brightdata.com/license
Unlock the full potential of LinkedIn data with our extensive dataset that combines profiles, company information, and job listings into one powerful resource for business decision-making, strategic hiring, competitive analysis, and market trend insights. This all-encompassing dataset is ideal for professionals, recruiters, analysts, and marketers aiming to enhance their strategies and operations across various business functions. Dataset Features
Profiles: Dive into detailed public profiles featuring names, titles, positions, experience, education, skills, and more. Utilize this data for talent sourcing, lead generation, and investment signaling, with a refresh rate ensuring up to 30 million records per month. Companies: Access comprehensive company data including ID, country, industry, size, number of followers, website details, subsidiaries, and posts. Tailored subsets by industry or region provide invaluable insights for CRM enrichment, competitive intelligence, and understanding the startup ecosystem, updated monthly with up to 40 million records. Job Listings: Explore current job opportunities detailed with job titles, company names, locations, and employment specifics such as seniority levels and employment functions. This dataset includes direct application links and real-time application numbers, serving as a crucial tool for job seekers and analysts looking to understand industry trends and the job market dynamics.
Customizable Subsets for Specific Needs Our LinkedIn dataset offers the flexibility to tailor the dataset according to your specific business requirements. Whether you need comprehensive insights across all data points or are focused on specific segments like job listings, company profiles, or individual professional details, we can customize the dataset to match your needs. This modular approach ensures that you get only the data that is most relevant to your objectives, maximizing efficiency and relevance in your strategic applications. Popular Use Cases
Strategic Hiring and Recruiting: Track talent movement, identify growth opportunities, and enhance your recruiting efforts with targeted data. Market Analysis and Competitive Intelligence: Gain a competitive edge by analyzing company growth, industry trends, and strategic opportunities. Lead Generation and CRM Enrichment: Enrich your database with up-to-date company and professional data for targeted marketing and sales strategies. Job Market Insights and Trends: Leverage detailed job listings for a nuanced understanding of employment trends and opportunities, facilitating effective job matching and market analysis. AI-Driven Predictive Analytics: Utilize AI algorithms to analyze large datasets for predicting industry shifts, optimizing business operations, and enhancing decision-making processes based on actionable data insights.
Whether you are mapping out competitive landscapes, sourcing new talent, or analyzing job market trends, our LinkedIn dataset provides the tools you need to succeed. Customize your access to fit specific needs, ensuring that you have the most relevant and timely data at your fingertips.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It is difficult to handle the extraordinary data volume generated in many fields with current computational resources and techniques. This is very challenging when applying conventional statistical methods to big data. A common approach is to partition full data into smaller subdata for purposes such as training, testing, and validation. The primary purpose of training data is to represent the full data. To achieve this goal, the selection of training subdata becomes pivotal in retaining essential characteristics of the full data. Recently, several procedures have been proposed to select “optimal design points” as training subdata under pre-specified models, such as linear regression and logistic regression. However, these subdata will not be “optimal” if the assumed model is not appropriate. Furthermore, such subdata cannot be useful to build alternative models because it is not an appropriate representative sample of the full data. In this article, we propose a novel algorithm for better model building and prediction via a process of selecting a “good” training sample. The proposed subdata can retain most characteristics of the original big data. It is also more robust that one can fit various response model and select the optimal model. Supplementary materials for this article are available online.
There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the ongoing energy transition, power grids are evolving fast. They operate more and more often close to their technical limit, under more and more volatile conditions. Fast, essentially real-time computational approaches to evaluate their operational safety, stability and reliability are therefore highly desirable. Machine Learning methods have been advocated to solve this challenge, however they are heavy consumers of training and testing data, while historical operational data for real-world power grids are hard if not impossible to access.
This dataset contains long time series for production, consumption, and line flows, amounting to 20 years of data with a time resolution of one hour, for several thousands of loads and several hundreds of generators of various types representing the ultra-high-voltage transmission grid of continental Europe. The synthetic time series have been statistically validated agains real-world data.
The algorithm is described in a Nature Scientific Data paper. It relies on the PanTaGruEl model of the European transmission network -- the admittance of its lines as well as the location, type and capacity of its power generators -- and aggregated data gathered from the ENTSO-E transparency platform, such as power consumption aggregated at the national level.
The network information is encoded in the file europe_network.json. It is given in PowerModels format, which it itself derived from MatPower and compatible with PandaPower. The network features 7822 power lines and 553 transformers connecting 4097 buses, to which are attached 815 generators of various types.
The time series forming the core of this dataset are given in CSV format. Each CSV file is a table with 8736 rows, one for each hourly time step of a 364-day year. All years are truncated to exactly 52 weeks of 7 days, and start on a Monday (the load profiles are typically different during weekdays and weekends). The number of columns depends on the type of table: there are 4097 columns in load files, 815 for generators, and 8375 for lines (including transformers). Each column is described by a header corresponding to the element identifier in the network file. All values are given in per-unit, both in the model file and in the tables, i.e. they are multiples of a base unit taken to be 100 MW.
There are 20 tables of each type, labeled with a reference year (2016 to 2020) and an index (1 to 4), zipped into archive files arranged by year. This amount to a total of 20 years of synthetic data. When using loads, generators, and lines profiles together, it is important to use the same label: for instance, the files loads_2020_1.csv, gens_2020_1.csv, and lines_2020_1.csv represent a same year of the dataset, whereas gens_2020_2.csv is unrelated (it actually shares some features, such as nuclear profiles, but it is based on a dispatch with distinct loads).
The time series can be used without a reference to the network file, simply using all or a selection of columns of the CSV files, depending on the needs. We show below how to select series from a particular country, or how to aggregate hourly time steps into days or weeks. These examples use Python and the data analyis library pandas, but other frameworks can be used as well (Matlab, Julia). Since all the yearly time series are periodic, it is always possible to define a coherent time window modulo the length of the series.
This example illustrates how to select generation data for Switzerland in Python. This can be done without parsing the network file, but using instead gens_by_country.csv, which contains a list of all generators for any country in the network. We start by importing the pandas library, and read the column of the file corresponding to Switzerland (country code CH):
import pandas as pd
CH_gens = pd.read_csv('gens_by_country.csv', usecols=['CH'], dtype=str)
The object created in this way is Dataframe with some null values (not all countries have the same number of generators). It can be turned into a list with:
CH_gens_list = CH_gens.dropna().squeeze().to_list()
Finally, we can import all the time series of Swiss generators from a given data table with
pd.read_csv('gens_2016_1.csv', usecols=CH_gens_list)
The same procedure can be applied to loads using the list contained in the file loads_by_country.csv.
This second example shows how to change the time resolution of the series. Suppose that we are interested in all the loads from a given table, which are given by default with a one-hour resolution:
hourly_loads = pd.read_csv('loads_2018_3.csv')
To get a daily average of the loads, we can use:
daily_loads = hourly_loads.groupby([t // 24 for t in range(24 * 364)]).mean()
This results in series of length 364. To average further over entire weeks and get series of length 52, we use:
weekly_loads = hourly_loads.groupby([t // (24 * 7) for t in range(24 * 364)]).mean()
The code used to generate the dataset is freely available at https://github.com/GeeeHesso/PowerData. It consists in two packages and several documentation notebooks. The first package, written in Python, provides functions to handle the data and to generate synthetic series based on historical data. The second package, written in Julia, is used to perform the optimal power flow. The documentation in the form of Jupyter notebooks contains numerous examples on how to use both packages. The entire workflow used to create this dataset is also provided, starting from raw ENTSO-E data files and ending with the synthetic dataset given in the repository.
This work was supported by the Cyber-Defence Campus of armasuisse and by an internal research grant of the Engineering and Architecture domain of HES-SO.
Reproducibility is a fundamental requirement to advance science, and data management is the basic element for reproducibility. In hydrological modeling, there have been many efforts to improve the use of spatial data as model input; however, data sharing is file-level, the use of APIs are difficult, and data distribution service is fragile from fast-evolving technologies. Currently large datasets, GeoServer, and OPeNDAP are only used separately, limiting their benefits. The objective of this study is to create and share interoperable and reusable state scale large spatial datasets on GeoServer and OPeNDAP in HydroShare for open and reproducible seamless environmental modelling. We, first, present the procedures for creating and sharing large datasets. Then, we present application workflows with an example of the Regional Hydro-Ecologic Simulation System and evaluate the data consistency of large datasets. We apply three different scales of watershed in three different states to evaluate data consistency in modeling workflows.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by ultimatum_game
Released under MIT