100+ datasets found
  1. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  2. Data Science Platform Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Science Platform Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-science-platform-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Science Platform Market Outlook



    The global data science platform market size was valued at approximately USD 49.3 billion in 2023 and is projected to reach USD 174.4 billion by 2032, growing at a compound annual growth rate (CAGR) of 15.1% during the forecast period. This exponential growth can be attributed to the increasing demand for data-driven decision-making processes, the surge in big data technologies, and the need for more advanced analytics solutions across various industries.



    One of the primary growth factors driving the data science platform market is the rapid digital transformation efforts undertaken by organizations globally. Companies are shifting towards data-centric business models to gain a competitive edge, improve operational efficiency, and enhance customer experiences. The proliferation of IoT devices and the subsequent explosion of data generated have further propelled the need for sophisticated data science platforms capable of analyzing vast datasets in real-time. This transformation is not only seen in large enterprises but also increasingly in small and medium enterprises (SMEs) that recognize the potential of data analytics in driving business growth.



    Moreover, the advancements in artificial intelligence (AI) and machine learning (ML) technologies have significantly augmented the capabilities of data science platforms. These technologies enable the automation of complex data analysis processes, allowing for more accurate predictions and insights. As a result, sectors such as healthcare, finance, and retail are increasingly adopting data science solutions to leverage AI and ML for personalized services, fraud detection, and supply chain optimization. The integration of AI/ML into data science platforms is thus a critical factor contributing to market growth.



    Another crucial factor is the growing regulatory and compliance requirements across various industries. Organizations are mandated to ensure data accuracy, security, and privacy, necessitating the adoption of robust data science platforms that can handle these aspects efficiently. The implementation of regulations such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States has compelled organizations to invest in advanced data management and analytics solutions. These regulatory frameworks are not only a challenge but also an opportunity for the data science platform market to innovate and provide compliant solutions.



    Regionally, North America dominates the data science platform market due to the early adoption of advanced technologies, a strong presence of key market players, and significant investments in research and development. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period. This growth can be attributed to the increasing digitalization initiatives, a growing number of tech startups, and the rising demand for analytics solutions in countries like China, India, and Japan. The competitive landscape and economic development in these regions are creating ample opportunities for market expansion.



    Component Analysis



    The data science platform market, segmented by components, includes platforms and services. The platform segment encompasses software and tools designed for data integration, preparation, and analysis, while the services segment covers professional and managed services that support the implementation and maintenance of these platforms. The platform component is crucial as it provides the backbone for data science operations, enabling data scientists to perform data wrangling, model building, and deployment efficiently. The increasing demand for customized solutions tailored to specific business needs is driving the growth of the platform segment. Additionally, with the rise of open-source platforms, organizations have more flexibility and control over their data science workflows, further propelling this segment.



    On the other hand, the services segment is equally vital as it ensures that organizations can effectively deploy and utilize data science platforms. Professional services include consulting, training, and support, which help organizations in the seamless integration of data science solutions into their existing IT infrastructure. Managed services provide ongoing support and maintenance, ensuring data science platforms operate optimally. The rising complexity of data ecosystems and the shortage of skilled data scientists are factors contributing to the growth of the services segment, as organizations often rely on external expert

  3. Most used technologies in the data science tech stack worldwide 2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most used technologies in the data science tech stack worldwide 2024 [Dataset]. https://www.statista.com/statistics/1292394/popular-technologies-in-the-data-science-tech-stack/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Jun 30, 2024
    Area covered
    Worldwide
    Description

    A tech stack represents a combination of technologies a company uses in order to build and run an application or project. The most popular technology skill in the data science tech stack in 2024 was Python 3.x, chosen by **** percent of respondents. ETL ranked second, being used by *** percent of respondents. This comes as no surprise due to Python's importance in building artificial intelligence (AI) solutions and machine learning products.

  4. r

    Big Data and Society FAQ - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Jun 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Big Data and Society FAQ - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/faq/477/big-data-and-society
    Explore at:
    Dataset updated
    Jun 8, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Big Data and Society FAQ - ResearchHelpDesk - Big Data & Society (BD&S) is open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities and computing and their intersections with the arts and natural sciences about the implications of Big Data for societies. The Journal's key purpose is to provide a space for connecting debates about the emerging field of Big Data practices and how they are reconfiguring academic, social, industry, business, and government relations, expertise, methods, concepts, and knowledge. BD&S moves beyond usual notions of Big Data and treats it as an emerging field of practice that is not defined by but generative of (sometimes) novel data qualities such as high volume and granularity and complex analytics such as data linking and mining. It thus attends to digital content generated through online and offline practices in social, commercial, scientific, and government domains. This includes, for instance, the content generated on the Internet through social media and search engines but also that which is generated in closed networks (commercial or government transactions) and open networks such as digital archives, open government, and crowdsourced data. Critically, rather than settling on a definition the Journal makes this an object of interdisciplinary inquiries and debates explored through studies of a variety of topics and themes. BD&S seeks contributions that analyze Big Data practices and/or involve empirical engagements and experiments with innovative methods while also reflecting on the consequences for how societies are represented (epistemologies), realized (ontologies) and governed (politics). Article processing charge (APC) The article processing charge (APC) for this journal is currently 1500 USD. Authors who do not have funding for open access publishing can request a waiver from the publisher, SAGE, once their Original Research Article is accepted after peer review. For all other content (Commentaries, Editorials, Demos) and Original Research Articles commissioned by the Editor, the APC will be waived. Abstract & Indexing Clarivate Analytics: Social Sciences Citation Index (SSCI) Directory of Open Access Journals (DOAJ) Google Scholar Scopus

  5. f

    Big Data Analytics Market Size, Value & Share Analysis [2032]

    • fortunebusinessinsights.com
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fortune Business Insights (2025). Big Data Analytics Market Size, Value & Share Analysis [2032] [Dataset]. https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset authored and provided by
    Fortune Business Insights
    License

    https://www.fortunebusinessinsights.com/privacy/https://www.fortunebusinessinsights.com/privacy/

    Time period covered
    2024 - 2032
    Area covered
    Worldwide
    Description

    The global big data analytics market size was valued at $307.52 billion in 2023 & is projected to grow from $348.21 billion in 2024 to $961.89 billion by 2032

  6. e

    Introduction of Big Data

    • paper.erudition.co.in
    html
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Introduction of Big Data [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering/8/big-data-analysis
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Introduction of Big Data of Big Data Analysis, 8th Semester , Computer Science and Engineering

  7. Data Science Platform Market Size, Share & Trends Report, 2035

    • rootsanalysis.com
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Data Science Platform Market Size, Share & Trends Report, 2035 [Dataset]. https://www.rootsanalysis.com/data-science-platform-market
    Explore at:
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The data science platform market size is projected to grow from USD 138 billion in 2024 to USD 1,678 trillion by 2035, representing a high CAGR of 25.47%.

  8. B

    Big Data Analytics Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Big Data Analytics Report [Dataset]. https://www.datainsightsmarket.com/reports/big-data-analytics-1500091
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Europe
    Variables measured
    Market Size
    Description

    The Big Data Analytics market is experiencing robust growth, driven by the increasing volume of data generated across various industries and the need for deriving actionable insights. The market, estimated at $150 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $450 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based analytics solutions offers scalability, cost-effectiveness, and enhanced accessibility. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) are significantly boosting the analytical capabilities of big data platforms, enabling more sophisticated predictive modeling and real-time insights. Government initiatives promoting data-driven decision-making in various sectors also contribute to market growth. However, challenges remain, including the need for skilled professionals to manage and interpret complex data sets, concerns regarding data security and privacy, and the high initial investment costs associated with implementing big data solutions. Segment-wise, the cloud-based segment is anticipated to dominate the market due to its inherent advantages, while the on-premise deployment model continues to hold a significant share, catering to specific industry requirements. Key players like IBM, Oracle, Microsoft, and SAP are actively investing in research and development, expanding their product portfolios, and forging strategic partnerships to maintain their competitive edge. The competitive landscape is characterized by both established technology vendors and emerging startups, leading to continuous innovation and increased market dynamism. The geographic distribution shows strong growth in North America and Europe, driven by high technological adoption and the presence of major market players. However, Asia-Pacific is emerging as a key region for future expansion, fueled by increasing digitalization and government investments in infrastructure. The market's future trajectory suggests that ongoing technological advancements, coupled with increasing data volumes, will continue to propel its expansion.

  9. Online Data Science Training Programs Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Online Data Science Training Programs Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/online-data-science-training-programs-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Online Data Science Training Programs Market Size 2025-2029

    The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.

    What will be the Size of the Online Data Science Training Programs Market during the forecast period?

    Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.

    How is this Online Data Science Training Programs Industry segmented?

    The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand

  10. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.

    What is Big data?

    Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.

    Big data analytics

    Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  11. Data Science Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Science Platform Market Outlook



    According to our latest research, the global Data Science Platform market size reached $96.2 billion in 2024, reflecting robust demand across multiple industries. The market is expected to expand at a CAGR of 26.1% from 2025 to 2033, reaching a projected value of $764.6 billion by 2033. This remarkable growth is primarily driven by the increasing adoption of artificial intelligence and machine learning technologies, the surge in big data analytics, and the need for advanced data-driven decision-making frameworks across enterprises worldwide.



    The primary growth factor fueling the Data Science Platform market is the exponential rise in data generation and the subsequent demand for actionable insights. Organizations are increasingly leveraging data science platforms to harness structured and unstructured data, enabling them to gain a competitive edge through predictive analytics and real-time decision-making. The proliferation of IoT devices, digital transformation initiatives, and cloud-based infrastructure has further accelerated the deployment of data science solutions. Moreover, the growing complexity of business operations and the need for personalized customer experiences are compelling enterprises to invest heavily in advanced analytics platforms, contributing significantly to the market's expansion.



    Another critical driver is the rapid advancement in machine learning algorithms and automation capabilities integrated into data science platforms. These platforms now offer end-to-end solutions, from data ingestion and preparation to model deployment and monitoring, reducing the time and expertise required to derive value from data. The democratization of data science tools, coupled with the emergence of no-code and low-code platforms, is empowering a broader range of professionals to participate in analytics workflows. This democratization is particularly beneficial for small and medium enterprises (SMEs), enabling them to leverage sophisticated analytics without the need for extensive in-house expertise, thereby broadening the addressable market.



    Additionally, the increasing emphasis on regulatory compliance, data privacy, and security is shaping the evolution of the Data Science Platform market. Enterprises across sectors such as BFSI, healthcare, and government are prioritizing platforms that offer robust data governance, auditability, and transparency. The integration of explainable AI and ethical AI frameworks within data science platforms is becoming a key differentiator, especially as organizations navigate complex regulatory landscapes. This trend is not only fostering innovation but also building trust among stakeholders, further driving market growth.



    From a regional perspective, North America continues to dominate the Data Science Platform market, accounting for over 38% of the global revenue in 2024. The region's leadership can be attributed to its mature technology ecosystem, strong presence of leading market players, and high adoption rates of advanced analytics across industries. Asia Pacific is emerging as the fastest-growing region, with a projected CAGR of 29.4% through 2033, fueled by rapid digitalization, expanding IT infrastructure, and increasing investments in AI and big data analytics in countries such as China, India, and Japan. Europe and Latin America are also witnessing steady growth, supported by digital transformation initiatives and the growing focus on data-driven business strategies.





    Component Analysis



    The Data Science Platform market by component is segmented into platform and services. The platform segment dominates the market, accounting for the largest share due to the rising demand for integrated solutions that streamline the entire analytics workflow. These platforms provide comprehensive tools for data preparation, model development, deployment, and monitoring, enabling organizations to accelerate their analytics initiatives. The increasing adoption of cloud-based platforms, which offer scalability, flexi

  12. D

    Data Science Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Science Software Report [Dataset]. https://www.marketreportanalytics.com/reports/data-science-software-54284
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data science software market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI), machine learning (ML), and big data analytics across various industries. The market, estimated at $XX billion in 2025, is projected to exhibit a healthy Compound Annual Growth Rate (CAGR) of XX% from 2025 to 2033, reaching an estimated $YY billion by 2033. This expansion is fueled by several key factors, including the escalating need for data-driven decision-making, the proliferation of cloud-based solutions offering scalability and cost-effectiveness, and the rising demand for sophisticated analytical tools capable of handling complex datasets. Large enterprises are leading the adoption, leveraging data science software to optimize operations, enhance customer experiences, and gain a competitive edge. However, SMEs are increasingly adopting these solutions, driven by the availability of user-friendly platforms and affordable cloud-based options. The market is segmented by deployment type (cloud-based and on-premises), with cloud-based solutions gaining significant traction due to their flexibility and accessibility. North America currently holds a dominant market share, owing to the region's advanced technological infrastructure and high adoption rates within various sectors. However, Asia-Pacific is expected to demonstrate significant growth in the coming years, fueled by the burgeoning digital economy and expanding technological advancements in countries like China and India. Several restraining factors could impact the market's trajectory. These include the scarcity of skilled data scientists, the high cost of implementation and maintenance for complex solutions, especially for on-premise deployments, and concerns about data security and privacy. Despite these challenges, the ongoing technological advancements, the development of more user-friendly interfaces, and the increasing availability of readily accessible data are expected to mitigate these restraints. Key players like IBM SPSS, MATLAB, SAS, Tableau, RapidMiner, BigML, Minitab, DataRobot, Altair RapidMiner, and QlikView are constantly innovating and expanding their product offerings to cater to the evolving needs of businesses and organizations across various industry verticals. The competitive landscape is dynamic, characterized by strategic partnerships, acquisitions, and the emergence of new entrants, driving innovation and shaping the future trajectory of the data science software market. The forecast period of 2025-2033 promises further growth and transformation within this dynamic sector.

  13. a

    [Coursera] Introduction to Data Science (University of Washington) (datasci)...

    • academictorrents.com
    bittorrent
    Updated Mar 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Washington (2017). [Coursera] Introduction to Data Science (University of Washington) (datasci) [Dataset]. https://academictorrents.com/details/1448261dd6932e549ba4a86b5d6750aae858d003
    Explore at:
    bittorrent(1463983891)Available download formats
    Dataset updated
    Mar 5, 2017
    Dataset authored and provided by
    University of Washington
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    [Coursera] Introduction to Data Science (University of Washington) (datasci)

  14. Data Science Platform Market Size, Share, Trends | Global Growth Report,...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Data Science Platform Market Size, Share, Trends | Global Growth Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/data-science-platform-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Data Science Platform Market is Segmented by Offering (Platform, Services), Deployment (On-Premise, Cloud), Enterprise Size (Small and Medium Enterprises, Large Enterprises), End-User Industry (IT and Telecom, BFSI, Retail and E-Commerce, Manufacturing, and More), and Geography (North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).

  15. r

    Big Data and Society CiteScore 2024-2025 - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Apr 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Big Data and Society CiteScore 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/sjr/477/big-data-and-society
    Explore at:
    Dataset updated
    Apr 9, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Big Data and Society CiteScore 2024-2025 - ResearchHelpDesk - Big Data & Society (BD&S) is open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities and computing and their intersections with the arts and natural sciences about the implications of Big Data for societies. The Journal's key purpose is to provide a space for connecting debates about the emerging field of Big Data practices and how they are reconfiguring academic, social, industry, business, and government relations, expertise, methods, concepts, and knowledge. BD&S moves beyond usual notions of Big Data and treats it as an emerging field of practice that is not defined by but generative of (sometimes) novel data qualities such as high volume and granularity and complex analytics such as data linking and mining. It thus attends to digital content generated through online and offline practices in social, commercial, scientific, and government domains. This includes, for instance, the content generated on the Internet through social media and search engines but also that which is generated in closed networks (commercial or government transactions) and open networks such as digital archives, open government, and crowdsourced data. Critically, rather than settling on a definition the Journal makes this an object of interdisciplinary inquiries and debates explored through studies of a variety of topics and themes. BD&S seeks contributions that analyze Big Data practices and/or involve empirical engagements and experiments with innovative methods while also reflecting on the consequences for how societies are represented (epistemologies), realized (ontologies) and governed (politics). Article processing charge (APC) The article processing charge (APC) for this journal is currently 1500 USD. Authors who do not have funding for open access publishing can request a waiver from the publisher, SAGE, once their Original Research Article is accepted after peer review. For all other content (Commentaries, Editorials, Demos) and Original Research Articles commissioned by the Editor, the APC will be waived. Abstract & Indexing Clarivate Analytics: Social Sciences Citation Index (SSCI) Directory of Open Access Journals (DOAJ) Google Scholar Scopus

  16. P

    Data Science Platform Market Size Global Report, 2022 - 2030

    • polarismarketresearch.com
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2022). Data Science Platform Market Size Global Report, 2022 - 2030 [Dataset]. https://www.polarismarketresearch.com/industry-analysis/data-science-platform-market
    Explore at:
    Dataset updated
    Jun 6, 2022
    Dataset authored and provided by
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    The global data science platform market was valued at USD 95.31 billion in 2021 and is expected to grow at a CAGR of 27.6% during the forecast period.

  17. Global advanced analytics and data science software market share 2025

    • statista.com
    Updated Oct 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global advanced analytics and data science software market share 2025 [Dataset]. https://www.statista.com/statistics/1258535/advanced-analytics-data-science-market-share-technology-worldwide/
    Explore at:
    Dataset updated
    Oct 30, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    MATLAB led the global advanced analytics and data science software industry in 2025 with a market share of ***** percent. First launched in 1984, MATLAB is developed by the U.S. firm MathWorks.

  18. Data Science and Predictive Analytics Market Size | Growth Report 2037

    • researchnester.com
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Nester (2024). Data Science and Predictive Analytics Market Size | Growth Report 2037 [Dataset]. https://www.researchnester.com/reports/data-science-and-predictive-analytics-market/3448
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset authored and provided by
    Research Nester
    License

    https://www.researchnester.comhttps://www.researchnester.com

    Description

    The data science and predictive analytics market size was over USD 19.07 billion in 2024 and is projected to reach USD 179.05 billion by 2037, witnessing around 18.8% CAGR during the forecast period i.e., between 2025-2037. North America industry is estimated to dominate majority revenue share of 35% by 2037, on account of high rate of adoption of cutting-edge technology in the region.

  19. Data Science Tool Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Science Tool Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-science-tool-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Science Tool Market Outlook




    The global data science tool market size was valued at approximately USD 7.9 billion in 2023 and is projected to reach USD 29.8 billion by 2032, growing at a compound annual growth rate (CAGR) of 15.8% during the forecast period. This impressive growth is primarily driven by the escalating adoption of data science tools across various industries, driven by the need for data-driven decision making, advancements in machine learning and artificial intelligence, and an increasing amount of data generated worldwide.




    One of the significant growth factors for the data science tool market is the rising demand for big data analytics. Organizations across different sectors are increasingly recognizing the value of data analytics to gain insights, improve customer experience, and enhance operational efficiency. The surge in data generation, propelled by the proliferation of digital devices and social media, has necessitated the adoption of sophisticated data science tools to handle and analyze large datasets effectively. This growing reliance on data-driven decision-making is a key driver boosting the market growth.




    Another vital factor contributing to the market expansion is the advancements in artificial intelligence (AI) and machine learning (ML) technologies. Modern data science tools leverage AI and ML to offer advanced analytics capabilities, enabling organizations to predict trends, automate processes, and make more informed decisions. The continuous development in AI algorithms and the integration of these technologies into data science tools have significantly enhanced their capabilities, making them indispensable for businesses aiming to stay competitive in todayÂ’s digital landscape.




    The increasing application of data science tools in various industries such as healthcare, finance, retail, manufacturing, and IT & telecommunications further propels market growth. In healthcare, data science tools are used for predictive analytics, patient care optimization, and operational efficiency. Financial institutions utilize these tools for risk management, fraud detection, and customer analytics. Similarly, in retail and e-commerce, data science tools are employed for inventory management, customer segmentation, and personalized marketing. The broadening scope of applications across different sectors underscores the growing importance of data science tools.




    From a regional perspective, North America holds the largest market share in the data science tool market, driven by the presence of major technology companies, high adoption rates of advanced technologies, and significant investments in AI and big data analytics. Europe follows closely, with increasing digital transformation initiatives and government support for data-driven innovations. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid industrialization, expanding IT sector, and growing awareness about the benefits of data analytics among businesses.



    The advent of Ai Data Analysis Tool has revolutionized the way businesses approach data analytics. These tools are designed to process and analyze vast amounts of data with remarkable speed and accuracy, enabling organizations to derive actionable insights in real-time. By leveraging artificial intelligence, these tools can identify patterns and trends that might be missed by traditional data analysis methods. This capability is particularly beneficial for industries that rely heavily on data-driven decision-making, such as finance, healthcare, and retail. As businesses continue to generate more data, the demand for AI-powered data analysis tools is expected to grow, driving further innovation and development in this field.



    Component Analysis




    The data science tool market is segmented by component into software and services. The software segment includes a wide array of tools such as data preparation tools, data mining tools, data visualization tools, and predictive analytics tools. These software solutions are designed to assist data scientists and analysts in processing and analyzing complex data sets. The growing need for advanced data analytics solutions to manage and analyze large volumes of data is driving the demand for these software tools. The continuous innovation in software functionalities and the integrati

  20. e

    Data format

    • paper.erudition.co.in
    html
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2024). Data format [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering/8/big-data-analysis
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Data format of Big Data Analysis, 8th Semester , Computer Science and Engineering

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
Organization logo

Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE)

Explore at:
Dataset updated
Feb 15, 2025
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
Global, United States
Description

Snapshot img

Data Science Platform Market Size 2025-2029

The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

What will be the Size of the Data Science Platform Market during the forecast period?

Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

How is this Data Science Platform Industry segmented?

The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

By Deployment Insights

The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

Search
Clear search
Close search
Google apps
Main menu