Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Five files, one of which is a ZIP archive, containing data that support the findings of this study. PDF file "IA screenshots CSU Libraries search config" contains screenshots captured from the Internet Archive's Wayback Machine for all 24 CalState libraries' homepages for years 2017 - 2019. Excel file "CCIHE2018-PublicDataFile" contains Carnegie Classifications data from the Indiana University Center for Postsecondary Research for all of the CalState campuses from 2018. CSV file "2017-2019_RAW" contains the raw data exported from Ex Libris Primo Analytics (OBIEE) for all 24 CalState libraries for calendar years 2017 - 2019. CSV file "clean_data" contains the cleaned data from Primo Analytics which was used for all subsequent analysis such as charting and import into SPSS for statistical testing. ZIP archive file "NonparametricStatisticalTestsFromSPSS" contains 23 SPSS files [.spv format] reporting the results of testing conducted in SPSS. This archive includes things such as normality check, descriptives, and Kruskal-Wallis H-test results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Heterogenous Big dataset is presented in this proposed work: electrocardiogram (ECG) signal, blood pressure signal, oxygen saturation (SpO2) signal, and the text input. This work is an extension version for our relevant formulating of dataset that presented in [1] and a trustworthy and relevant medical dataset library (PhysioNet [2]) was used to acquire these signals. The dataset includes medical features from heterogenous sources (sensory data and non-sensory). Firstly, ECG sensor’s signals which contains QRS width, ST elevation, peak numbers, and cycle interval. Secondly: SpO2 level from SpO2 sensor’s signals. Third, blood pressure sensors’ signals which contain high (systolic) and low (diastolic) values and finally text input which consider non-sensory data. The text inputs were formulated based on doctors diagnosing procedures for heart chronic diseases. Python software environment was used, and the simulated big data is presented along with analyses.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.
One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.
Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.
Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.
As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.
Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.
The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.
Key observations
The largest age group in Excel, AL was for the group of age 5 to 9 years years with a population of 77 (15.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here
The Large Truck* Crash Causation Study (LTCCS) is based on a three-year data collection project conducted by the Federal Motor Carrier Safety Administration (FMCSA) and the National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of Transportation (DOT). LTCCS is the first-ever national study to attempt to determine the critical events and associated factors that contribute to serious large truck crashes allowing DOT and others to implement effective countermeasures to reduce the occurrence and severity of these crashes.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
We have used Analytic Hierarchy Process (AHP) to derive the priorities of all the factors in the evaluation framework for open government data (OGD) portals. The results of AHP process were shown in the uploaded pdf file. We have collected 2635 open government datasets of 15 different subject categories (local statistics, health, education, cultural activity, transportation, map, public safety, policies and legislation, weather, environment quality, registration, credit records, international trade, budget and spend, and government bid) from 9 OGD portals in China (Beijing, Zhejiang, Shanghai, Guangdong, Guizhou, Sichuan, XInjiang, Hong Kong and Taiwan). These datasets were used for the evaluation of these portals in our study. The records of the quality and open access of these datasets could be found in the uploaded Excel file.
The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global spreadsheet software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions and the rising demand for data analysis tools across various industries. The market, estimated at $50 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $150 billion by the end of the forecast period. This growth is fueled by several key factors. Firstly, the increasing reliance on data-driven decision-making across businesses, irrespective of size, necessitates efficient data management and analysis capabilities provided by spreadsheet software. Secondly, the proliferation of cloud-based spreadsheet applications offers enhanced collaboration, accessibility, and scalability, making them attractive to organizations of all sizes. Finally, continuous advancements in features like advanced analytics, data visualization, and integration with other business applications enhance the overall utility and appeal of these tools. Major players like Microsoft, Google, and Zoho are continuously innovating, adding new features and improving user experience to maintain their market leadership. However, the market also faces challenges. Security concerns related to data storage and access in cloud-based solutions, and the need for continuous training and upskilling to leverage advanced features, pose limitations to wider adoption. Despite these challenges, the long-term outlook for the spreadsheet software market remains positive. The increasing digitization of businesses and the expanding adoption of big data analytics will propel demand for sophisticated spreadsheet tools. The emergence of niche players focusing on specific industry needs and specialized functionalities will also contribute to market expansion. Competition will remain fierce among established players and newcomers, prompting innovation and improvement in the overall product offerings. The market will witness consolidation through mergers and acquisitions, and a shift towards subscription-based models, further driving market growth and shaping the competitive landscape. The geographic distribution of the market will see continued growth in developing economies, driven by increasing internet penetration and smartphone adoption.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
News dissemination plays a vital role in supporting people to incorporate beneficial actions during public health emergencies, thereby significantly reducing the adverse influences of events. Based on big data from YouTube, this research study takes the declaration of COVID-19 National Public Health Emergency (PHE) as the event impact and employs a DiD model to investigate the effect of PHE on the news dissemination strength of relevant videos. The study findings indicate that the views, comments, and likes on relevant videos significantly increased during the COVID-19 public health emergency. Moreover, the public’s response to PHE has been rapid, with the highest growth in comments and views on videos observed within the first week of the public health emergency, followed by a gradual decline and returning to normal levels within four weeks. In addition, during the COVID-19 public health emergency, in the context of different types of media, lifestyle bloggers, local media, and institutional media demonstrated higher growth in the news dissemination strength of relevant videos as compared to news & political bloggers, foreign media, and personal media, respectively. Further, the audience attracted by related news tends to display a certain level of stickiness, therefore this audience may subscribe to these channels during public health emergencies, which confirms the incentive mechanisms of social media platforms to foster relevant news dissemination during public health emergencies. The proposed findings provide essential insights into effective news dissemination in potential future public health events.
CSVs with more than 1 million rows can be viewed using add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets. The Microsoft PowerPivot add-on for Excel is available using the link in the 'Related Links' section below. Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. Start Excel as normal Click on the PowerPivot tab
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
https://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFYhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.1/customlicense?persistentId=doi:10.5683/SP3/SZHJFY
This CD-ROM product is an authoritative reference source of 15 key financial ratios by industry groupings compiled from the North American Industry Classification System (NAICS 2007). It is based on up-to-date, reliable and comprehensive data on Canadian businesses, derived from Statistics Canada databases of financial statements for three reference years. The CD-ROM enables users to compare their enterprise's performance to that of their industry and to address issues such as profitability, efficiency and business risk. Financial Performance Indicators can also be used for inter-industry comparisons. Volume 1 covers large enterprises in both the financial and non-financial sectors, at the national level, with annual operating revenue of $25 million or more. Volume 2 covers medium-sized enterprises in the non-financial sector, at the national level, with annual operating revenue of $5 million to less than $25 million. Volume 3 covers small enterprises in the non-financial sector, at the national, provincial, territorial, Atlantic region and Prairie region levels, with annual operating revenue of $30,000 to less than $5 million. Note: FPICB has been discontinued as of 2/23/2015. Statistics Canada continues to provide information on Canadian businesses through alternative data sources. Information on specific financial ratios will continue to be available through the annual Financial and Taxation Statistics for Enterprises program: CANSIM table 180-0003 ; the Quarterly Survey of Financial Statements: CANSIM tables 187-0001 and 187-0002 ; and the Small Business Profiles, which present financial data for small businesses in Canada, available on Industry Canada's website: Financial Performance Data.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Warning: Large file size (over 1GB). Each monthly data set is large (over 4 million rows), but can be viewed in standard software such as Microsoft WordPad (save by right-clicking on the file name and selecting 'Save Target As', or equivalent on Mac OSX). It is then possible to select the required rows of data and copy and paste the information into another software application, such as a spreadsheet. Alternatively add-ons to existing software, such as the Microsoft PowerPivot add-on for Excel, to handle larger data sets, can be used. The Microsoft PowerPivot add-on for Excel is available from the Microsoft Download Center, using the link in the 'Related Links' section below. Once PowerPivot has been installed, to load the large files, please follow the instructions below. Note that it may take at least 20 to 30 minutes to load one monthly file. Start Excel as normal Click on the PowerPivot tab Click on the PowerPivot Window icon (top left) In the PowerPivot Window, click on the "From Other Sources" icon In the Table Import Wizard e.g. scroll to the bottom and select Text File Browse to the file you want to open and choose the file extension you require e.g. CSV Once the data has been imported you can view it in a spreadsheet. What does the data cover? General practice prescribing data is a list of all medicines, dressings and appliances that are prescribed and dispensed each month. A record will only be produced when this has occurred and there is no record for a zero total. For each practice in England, the following information is presented at presentation level for each medicine, dressing and appliance, (by presentation name): the total number of items prescribed and dispensed the total net ingredient cost the total actual cost the total quantity The data covers NHS prescriptions written in England and dispensed in the community in the UK. Prescriptions written in England but dispensed outside England are included. The data includes prescriptions written by GPs and other non-medical prescribers (such as nurses and pharmacists) who are attached to GP practices. GP practices are identified only by their national code, so an additional data file - linked to the first by the practice code - provides further detail in relation to the practice. Presentations are identified only by their BNF code, so an additional data file - linked to the first by the BNF code - provides the chemical name for that presentation.
The excelforms extension for CKAN provides a mechanism for users to input data into Table Designer tables using Excel-based forms, enhancing data entry efficiency. This extension focuses on streamlining the process of adding data rows to tables within CKAN's Table Designer. A key component of the functionality is the ability to import multiple rows in a single operation, which significant reduces overhead associated with entering multiple data points. Key Features: Excel-Based Forms: Users can enter data using familiar Excel spreadsheets, leveraging their existing skills and software. Table Designer Integration: Designed to work seamlessly with CKAN's Table Designer, extending its functionality to include Excel-based data entry. Multiple Row Import: Supports importing multiple rows of data at once, improving data entry efficiency, especially when dealing with large datasets. Data mapping: Simplifies the process of aligning excel column headers to their corresponding data fields in tables. Improved Data Entry Speed: Provides an alternative to manual data entry, resulting in faster population and easier updates. Technical Integration: The excelforms extension integrates with CKAN by introducing new functionalities and workflows around the Table Designer plugin. The installation instructions specify that this plugin to be added before the tabledesigner plugin. Benefits & Impact: By enabling Excel-based data entry, the excelforms extension improves the user experience for those familiar with spreadsheet software. The ability to import multiple rows simultaneously significantly reduces the time and effort required to populate tables, particularly when dealing with large amounts of data. The impact is better data accessibility through the streamlining of data population workflows.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global spreadsheets software market is experiencing robust growth, driven by increasing digitalization across industries and the rising adoption of cloud-based solutions. The market, estimated at $20 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $35 billion by 2033. This growth is fueled by several factors, including the expanding need for data analysis and visualization across SMEs and large enterprises, the increasing availability of user-friendly and feature-rich spreadsheet software, and the growing preference for collaborative tools that facilitate seamless teamwork. The market is segmented by operating system (Windows, Macintosh, Linux, Others) and user type (SMEs, Large Enterprises). While Microsoft Excel maintains a dominant market share, the rise of cloud-based alternatives like Google Sheets and collaborative platforms is challenging this dominance, fostering competition and innovation. Furthermore, the increasing integration of spreadsheets with other business intelligence tools further enhances their utility and fuels demand. Geographic expansion, particularly in developing economies with rising internet penetration, also contributes significantly to market expansion. However, factors such as the high initial investment in software licenses and the need for specialized training can restrain market growth, particularly for smaller businesses with limited budgets and technical expertise. The increasing complexity of data analysis necessitates enhanced security features and data protection measures, which add cost and require ongoing investment. Moreover, the emergence of advanced analytical tools and specialized data visualization software presents a competitive challenge, demanding continuous innovation and adaptation from existing spreadsheet software providers. Nevertheless, the overall market outlook remains positive, driven by sustained demand from diverse industries and technological advancements within the software landscape.
Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).