100+ datasets found
  1. Datasets for figures and tables

    • catalog.data.gov
    • datasets.ai
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Datasets for figures and tables [Dataset]. https://catalog.data.gov/dataset/datasets-for-figures-and-tables
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Software Model simulations were conducted using WRF version 3.8.1 (available at https://github.com/NCAR/WRFV3) and CMAQ version 5.2.1 (available at https://github.com/USEPA/CMAQ). The meteorological and concentration fields created using these models are too large to archive on ScienceHub, approximately 1 TB, and are archived on EPA’s high performance computing archival system (ASM) at /asm/MOD3APP/pcc/02.NOAH.v.CLM.v.PX/. Figures Figures 1 – 6 and Figure 8: Created using the NCAR Command Language (NCL) scripts (https://www.ncl.ucar.edu/get_started.shtml). NCLD code can be downloaded from the NCAR website (https://www.ncl.ucar.edu/Download/) at no cost. The data used for these figures are archived on EPA’s ASM system and are available upon request. Figures 7, 8b-c, 8e-f, 8h-i, and 9 were created using the AMET utility developed by U.S. EPA/ORD. AMET can be freely downloaded and used at https://github.com/USEPA/AMET. The modeled data paired in space and time provided in this archive can be used to recreate these figures. The data contained in the compressed zip files are organized in comma delimited files with descriptive headers or space delimited files that match tabular data in the manuscript. The data dictionary provides additional information about the files and their contents. This dataset is associated with the following publication: Campbell, P., J. Bash, and T. Spero. Updates to the Noah Land Surface Model in WRF‐CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA, 11(1): 231-256, (2019).

  2. Student Performance Data Set

    • kaggle.com
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data-Science Sean (2020). Student Performance Data Set [Dataset]. https://www.kaggle.com/datasets/larsen0966/student-performance-data-set
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Data-Science Sean
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    If this Data Set is useful, and upvote is appreciated. This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd-period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details).

  3. w

    Amazon Web Services - Public Data Sets

    • data.wu.ac.at
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global (2013). Amazon Web Services - Public Data Sets [Dataset]. https://data.wu.ac.at/schema/datahub_io/NTYxNjkxNmYtNmZlNS00N2EwLWJkYTktZjFjZWJkNTM2MTNm
    Explore at:
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Global
    Description

    About

    From website:

    Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.

    Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.

  4. Z

    Data from: #PraCegoVer dataset

    • data.niaid.nih.gov
    Updated Jan 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandra Avila (2023). #PraCegoVer dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5710561
    Explore at:
    Dataset updated
    Jan 19, 2023
    Dataset provided by
    Sandra Avila
    Gabriel Oliveira dos Santos
    Esther Luna Colombini
    Description

    Automatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.

    PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.

    PraCegoVer has 533,523 pairs with images and captions described in Portuguese collected from more than 14 thousand different profiles. Also, the average caption length in #PraCegoVer is 39.3 words and the standard deviation is 29.7.

    Dataset Structure

    PraCegoVer dataset is composed of the main file dataset.json and a collection of compressed files named images.tar.gz.partX

    containing the images. The file dataset.json comprehends a list of json objects with the attributes:

    user: anonymized user that made the post;

    filename: image file name;

    raw_caption: raw caption;

    caption: clean caption;

    date: post date.

    Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.

    Download Instructions

    If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:

    cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz

    Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:

    python download_dataset.py --access_token=

  5. u

    PDMX

    • cseweb.ucsd.edu
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, PDMX [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    We introduce PDMX: a Public Domain MusicXML dataset for symbolic music processing, including over 250k musical scores in MusicXML format. PDMX is the largest publicly available, copyright-free MusicXML dataset in existence. PDMX includes genre, tag, description, and popularity metadata for every file.

  6. P

    Meta-Dataset Dataset

    • paperswithcode.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eleni Triantafillou; Tyler Zhu; Vincent Dumoulin; Pascal Lamblin; Utku Evci; Kelvin Xu; Ross Goroshin; Carles Gelada; Kevin Swersky; Pierre-Antoine Manzagol; Hugo Larochelle, Meta-Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/meta-dataset
    Explore at:
    Authors
    Eleni Triantafillou; Tyler Zhu; Vincent Dumoulin; Pascal Lamblin; Utku Evci; Kelvin Xu; Ross Goroshin; Carles Gelada; Kevin Swersky; Pierre-Antoine Manzagol; Hugo Larochelle
    Description

    The Meta-Dataset benchmark is a large few-shot learning benchmark and consists of multiple datasets of different data distributions. It does not restrict few-shot tasks to have fixed ways and shots, thus representing a more realistic scenario. It consists of 10 datasets from diverse domains:

    ILSVRC-2012 (the ImageNet dataset, consisting of natural images with 1000 categories) Omniglot (hand-written characters, 1623 classes) Aircraft (dataset of aircraft images, 100 classes) CUB-200-2011 (dataset of Birds, 200 classes) Describable Textures (different kinds of texture images with 43 categories) Quick Draw (black and white sketches of 345 different categories) Fungi (a large dataset of mushrooms with 1500 categories) VGG Flower (dataset of flower images with 102 categories), Traffic Signs (German traffic sign images with 43 classes) MSCOCO (images collected from Flickr, 80 classes).

    All datasets except Traffic signs and MSCOCO have a training, validation and test split (proportioned roughly into 70%, 15%, 15%). The datasets Traffic Signs and MSCOCO are reserved for testing only.

  7. u

    Pinterest Fashion Compatibility

    • cseweb.ucsd.edu
    • beta.data.urbandatacentre.ca
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Pinterest Fashion Compatibility [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    This dataset contains images (scenes) containing fashion products, which are labeled with bounding boxes and links to the corresponding products.

    Metadata includes

    • product IDs

    • bounding boxes

    Basic Statistics:

    • Scenes: 47,739

    • Products: 38,111

    • Scene-Product Pairs: 93,274

  8. c

    Booking hotel reviews large dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Booking hotel reviews large dataset [Dataset]. https://crawlfeeds.com/datasets/booking-hotel-reviews-large-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore our extensive Booking Hotel Reviews Large Dataset, featuring over 20.8 million records of detailed customer feedback from hotels worldwide. Whether you're conducting sentiment analysis, market research, or competitive benchmarking, this dataset provides invaluable insights into customer experiences and preferences.

    The dataset includes crucial information such as reviews, ratings, comments, and more, all sourced from travellers who booked through Booking.com. It's an ideal resource for businesses aiming to understand guest sentiments, improve service quality, or refine marketing strategies within the hospitality sector.

    With this hotel reviews dataset, you can dive deep into trends and patterns that reveal what customers truly value during their stays. Whether you're analyzing reviews for sentiment analysis or studying traveller feedback from specific regions, this dataset delivers the insights you need.

    Ready to get started? Download the complete hotel review dataset or connect with the Crawl Feeds team to request records tailored to specific countries or regions. Unlock the power of data and take your hospitality analysis to the next level!

    Access 3 million+ US hotel reviews — submit your request today.

  9. c

    Comprehensive eBay Products Dataset: Analyze Listings, Prices, and Trends |...

    • crawlfeeds.com
    csv, zip
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Comprehensive eBay Products Dataset: Analyze Listings, Prices, and Trends | Download Now! [Dataset]. https://crawlfeeds.com/datasets/ebay-products-dataset
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Massive eBay Marketplace Data Collection for E-commerce Intelligence

    Unlock the power of online marketplace analytics with our comprehensive eBay products dataset. This premium collection contains 1.29 million products from eBay's global marketplace, providing extensive insights into one of the world's largest e-commerce platforms. Perfect for competitive analysis, pricing strategies, market research, and machine learning applications in e-commerce.

    Dataset Overview

    • Total Products: 1,290,000+ marketplace listings
    • Source: eBay Global Marketplace
    • Format: CSV, ZIP compressed
    • File Size: Optimized compressed format
    • Coverage: Multi-category product listings across eBay

    Complete Data Fields Included

    Product Identification

    • id: Unique eBay product identifiers
    • name: Complete product titles and names
    • url: Direct eBay listing page links
    • epid: eBay Product ID for catalog matching
    • source: Data source identification

    Product Details

    • raw_product_description: Original unprocessed product descriptions
    • product_description: Cleaned and formatted product descriptions
    • brand: Brand names and manufacturer information
    • mpn: Manufacturer Part Numbers
    • gtin13: Global Trade Item Numbers (barcodes)

    Pricing and Availability

    • price: Current listing prices
    • currency: Currency information for international listings
    • in_stock: Stock availability status
    • breadcrumbs: Category navigation paths

    Visual and Technical Data

    • images: Product image URLs and references
    • crawled_at: Data collection timestamps

    Key Use Cases

    E-commerce Market Research

    • Analyze eBay marketplace trends and patterns
    • Study product category performance
    • Monitor pricing strategies across sellers
    • Identify high-demand product categories

    Competitive Intelligence

    • Benchmark pricing against eBay marketplace
    • Analyze product positioning strategies
    • Study seller competition and market share
    • Monitor inventory levels and availability

    Price Optimization

    • Develop dynamic pricing algorithms
    • Analyze price elasticity across categories
    • Compare marketplace pricing trends
    • Optimize listing prices for maximum visibility

    Machine Learning Applications

    • Train recommendation systems
    • Develop price prediction models
    • Create product categorization algorithms
    • Build inventory forecasting systems

    Target Industries

    E-commerce Retailers

    • Marketplace Strategy: Optimize eBay selling strategies
    • Pricing Intelligence: Competitive price monitoring
    • Product Research: Identify profitable product opportunities
    • Inventory Planning: Demand forecasting and stock optimization

    Technology Companies

    • AI Training Data: Machine learning model development
    • Analytics Platforms: E-commerce intelligence tools
    • Price Comparison: Marketplace comparison services
    • Search Enhancement: Product discovery optimization

    Market Research Firms

    • Industry Reports: E-commerce marketplace analysis
    • Consumer Behavior: Online shopping pattern studies
    • Brand Monitoring: Brand performance tracking
    • Trend Analysis: Market trend identification

    Academic Research

    • E-commerce Studies: Online marketplace research
    • Business Intelligence: Retail analytics case studies
    • Data Science Projects: Large-scale dataset analysis
    • Economic Research: Digital marketplace economics

    Data Quality Features

    • Comprehensive Coverage: 1.29 million unique products
    • Rich Metadata: Complete product information included
    • Validated Data: Quality-checked and processed
    • Structured Format: Ready-to-use CSV format
    • Global Scope: International marketplace coverage
  10. u

    Product Exchange/Bartering Data

    • cseweb.ucsd.edu
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Product Exchange/Bartering Data [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    These datasets contain peer-to-peer trades from various recommendation platforms.

    Metadata includes

    • peer-to-peer trades

    • have and want lists

    • image data (tradesy)

  11. g

    Large License Plate Detection Dataset

    • gts.ai
    json
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Large License Plate Detection Dataset [Dataset]. https://gts.ai/dataset-download/large-license-plate-detection-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 29, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Large License Plate Detection Dataset is an extensive collection of images sourced from Google Open Images, designed for the development and validation of license plate recognition algorithms.

  12. h

    the-stack

    • huggingface.co
    • opendatalab.com
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BigCode (2022). the-stack [Dataset]. https://huggingface.co/datasets/bigcode/the-stack
    Explore at:
    Dataset updated
    Oct 27, 2022
    Dataset authored and provided by
    BigCode
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Card for The Stack

      Changelog
    

    Release Description

    v1.0 Initial release of the Stack. Included 30 programming languages and 18 permissive licenses. Note: Three included licenses (MPL/EPL/LGPL) are considered weak copyleft licenses. The resulting near-deduplicated dataset is 3TB in size.

    v1.1 The three copyleft licenses ((MPL/EPL/LGPL) were excluded and the list of permissive licenses extended to 193 licenses in total. The list of programming languages… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/the-stack.

  13. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  14. Annotated Benchmark of Real-World Data for Approximate Functional Dependency...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jul 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Parciak; Marcel Parciak; Sebastiaan Weytjens; Frank Neven; Niel Hens; Liesbet M. Peeters; Stijn Vansummeren; Sebastiaan Weytjens; Frank Neven; Niel Hens; Liesbet M. Peeters; Stijn Vansummeren (2023). Annotated Benchmark of Real-World Data for Approximate Functional Dependency Discovery [Dataset]. http://doi.org/10.5281/zenodo.8098909
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 1, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marcel Parciak; Marcel Parciak; Sebastiaan Weytjens; Frank Neven; Niel Hens; Liesbet M. Peeters; Stijn Vansummeren; Sebastiaan Weytjens; Frank Neven; Niel Hens; Liesbet M. Peeters; Stijn Vansummeren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Annotated Benchmark of Real-World Data for Approximate Functional Dependency Discovery

    This collection consists of ten open access relations commonly used by the data management community. In addition to the relations themselves (please take note of the references to the original sources below), we added three lists in this collection that describe approximate functional dependencies found in the relations. These lists are the result of a manual annotation process performed by two independent individuals by consulting the respective schemas of the relations and identifying column combinations where one column implies another based on its semantics. As an example, in the claims.csv file, the AirportCode implies AirportName, as each code should be unique for a given airport.

    The file ground_truth.csv is a comma separated file containing approximate functional dependencies. table describes the relation we refer to, lhs and rhs reference two columns of those relations where semantically we found that lhs implies rhs.

    The file excluded_candidates.csv and included_candidates.csv list all column combinations that were excluded or included in the manual annotation, respectively. We excluded a candidate if there was no tuple where both attributes had a value or if the g3_prime value was too small.

    Dataset References

  15. g

    Inspire Download Service (predefined ATOM) for data set development plan...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inspire Download Service (predefined ATOM) for data set development plan "Die BIG 1. Modification (sub-area)» [Dataset]. https://gimi9.com/dataset/eu_b8daed0e-a910-0001-ab29-faf41096a372/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Description of the INSPIRE Download Service (predefined Atom): Development plan "The BIG 1. Change (sub-area)" of the city of Völklingen — The link(s) for downloading the records is/are generated dynamically from a DataURL link of a WMS layer

  16. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  17. Z

    Automotive CAN bus data: An Example Dataset from the AEGIS Big Data Project

    • data.niaid.nih.gov
    • explore.openaire.eu
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaiser, Christian (2020). Automotive CAN bus data: An Example Dataset from the AEGIS Big Data Project [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3267183
    Explore at:
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    Kaiser, Christian
    Festl, Andreas
    Stocker, Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here you find an example research data dataset for the automotive demonstrator within the "AEGIS - Advanced Big Data Value Chain for Public Safety and Personal Security" big data project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732189. The time series data has been collected during trips conducted by three drivers driving the same vehicle in Austria.

    The dataset contains 20Hz sampled CAN bus data from a passenger vehicle, e.g. WheelSpeed FL (speed of the front left wheel), SteerAngle (steering wheel angle), Role, Pitch, and accelerometer values per direction.

    GPS data from the vehicle (see signals 'Latitude_Vehicle' and 'Longitude_Vehicle' in h5 group 'Math') and GPS data from the IMU device (see signals 'Latitude_IMU', 'Longitude_IMU' and 'Time_IMU' in h5 group 'Math') are included. However, as it had to be exported with single-precision, we lost some precision for those GPS values.

    For data analysis we use R and R Studio (https://www.rstudio.com/) and the library h5.

    e.g. check file with R code:

    library(h5)

    f <- h5file("file path/20181113_Driver1_Trip1.hdf")

    summary(f["CAN/Yawrate1"][,])

    summary(f["Math/Latitude_IMU"][,])

    h5close(f)

  18. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  19. Z

    Data from: Large Landing Trajectory Data Set for Go-Around Analysis

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Dettling (2022). Large Landing Trajectory Data Set for Go-Around Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7148116
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset provided by
    Benoit Figuet
    Manuel Waltert
    Marcel Dettling
    Timothé Krauth
    Raphael Monstein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Large go-around, also referred to as missed approach, data set. The data set is in support of the paper presented at the OpenSky Symposium on November the 10th.

    If you use this data for a scientific publication, please consider citing our paper.

    The data set contains landings from 176 (mostly) large airports from 44 different countries. The landings are labelled as performing a go-around (GA) or not. In total, the data set contains almost 9 million landings with more than 33000 GAs. The data was collected from OpenSky Network's historical data base for the year 2019. The published data set contains multiple files:

    go_arounds_minimal.csv.gz

    Compressed CSV containing the minimal data set. It contains a row for each landing and a minimal amount of information about the landing, and if it was a GA. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        time
        date time
        UTC time of landing or first GA attempt
    
    
        icao24
        string
        Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
    
    
        callsign
        string
        Aircraft identifier in air-ground communications
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        has_ga
        string
        "True" if at least one GA was performed, otherwise "False"
    
    
        n_approaches
        integer
        Number of approaches identified for this flight
    
    
        n_rwy_approached
        integer
        Number of unique runways approached by this flight
    

    The last two columns, n_approaches and n_rwy_approached, are useful to filter out training and calibration flight. These have usually a large number of n_approaches, so an easy way to exclude them is to filter by n_approaches > 2.

    go_arounds_augmented.csv.gz

    Compressed CSV containing the augmented data set. It contains a row for each landing and additional information about the landing, and if it was a GA. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        time
        date time
        UTC time of landing or first GA attempt
    
    
        icao24
        string
        Unique 24-bit (hexadecimal number) ICAO identifier of the aircraft concerned
    
    
        callsign
        string
        Aircraft identifier in air-ground communications
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        has_ga
        string
        "True" if at least one GA was performed, otherwise "False"
    
    
        n_approaches
        integer
        Number of approaches identified for this flight
    
    
        n_rwy_approached
        integer
        Number of unique runways approached by this flight
    
    
        registration
        string
        Aircraft registration
    
    
        typecode
        string
        Aircraft ICAO typecode
    
    
        icaoaircrafttype
        string
        ICAO aircraft type
    
    
        wtc
        string
        ICAO wake turbulence category
    
    
        glide_slope_angle
        float
        Angle of the ILS glide slope in degrees
    
    
        has_intersection
    

    string

        Boolean that is true if the runway has an other runway intersecting it, otherwise false
    
    
        rwy_length
        float
        Length of the runway in kilometre
    
    
        airport_country
        string
        ISO Alpha-3 country code of the airport
    
    
        airport_region
        string
        Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
    
    
        operator_country
        string
        ISO Alpha-3 country code of the operator
    
    
        operator_region
        string
        Geographical region of the operator of the aircraft (either Europe, North America, South America, Asia, Africa, or Oceania)
    
    
        wind_speed_knts
        integer
        METAR, surface wind speed in knots
    
    
        wind_dir_deg
        integer
        METAR, surface wind direction in degrees
    
    
        wind_gust_knts
        integer
        METAR, surface wind gust speed in knots
    
    
        visibility_m
        float
        METAR, visibility in m
    
    
        temperature_deg
        integer
        METAR, temperature in degrees Celsius
    
    
        press_sea_level_p
        float
        METAR, sea level pressure in hPa
    
    
        press_p
        float
        METAR, QNH in hPA
    
    
        weather_intensity
        list
        METAR, list of present weather codes: qualifier - intensity
    
    
        weather_precipitation
        list
        METAR, list of present weather codes: weather phenomena - precipitation
    
    
        weather_desc
        list
        METAR, list of present weather codes: qualifier - descriptor
    
    
        weather_obscuration
        list
        METAR, list of present weather codes: weather phenomena - obscuration
    
    
        weather_other
        list
        METAR, list of present weather codes: weather phenomena - other
    

    This data set is augmented with data from various public data sources. Aircraft related data is mostly from the OpenSky Network's aircraft data base, the METAR information is from the Iowa State University, and the rest is mostly scraped from different web sites. If you need help with the METAR information, you can consult the WMO's Aerodrom Reports and Forecasts handbook.

    go_arounds_agg.csv.gz

    Compressed CSV containing the aggregated data set. It contains a row for each airport-runway, i.e. every runway at every airport for which data is available. The data is structured in the following way:

        Column name
        Type
        Description
    
    
    
    
        airport
        string
        ICAO airport code where the aircraft is landing
    
    
        runway
        string
        Runway designator on which the aircraft landed
    
    
        n_landings
        integer
        Total number of landings observed on this runway in 2019
    
    
        ga_rate
        float
        Go-around rate, per 1000 landings
    
    
        glide_slope_angle
        float
        Angle of the ILS glide slope in degrees
    
    
        has_intersection
        string
        Boolean that is true if the runway has an other runway intersecting it, otherwise false
    
    
        rwy_length
        float
        Length of the runway in kilometres
    
    
        airport_country
        string
        ISO Alpha-3 country code of the airport
    
    
        airport_region
        string
        Geographical region of the airport (either Europe, North America, South America, Asia, Africa, or Oceania)
    

    This aggregated data set is used in the paper for the generalized linear regression model.

    Downloading the trajectories

    Users of this data set with access to OpenSky Network's Impala shell can download the historical trajectories from the historical data base with a few lines of Python code. For example, you want to get all the go-arounds of the 4th of January 2019 at London City Airport (EGLC). You can use the Traffic library for easy access to the database:

    import datetime from tqdm.auto import tqdm import pandas as pd from traffic.data import opensky from traffic.core import Traffic

    load minimum data set

    df = pd.read_csv("go_arounds_minimal.csv.gz", low_memory=False) df["time"] = pd.to_datetime(df["time"])

    select London City Airport, go-arounds, and 2019-01-04

    airport = "EGLC" start = datetime.datetime(year=2019, month=1, day=4).replace( tzinfo=datetime.timezone.utc ) stop = datetime.datetime(year=2019, month=1, day=5).replace( tzinfo=datetime.timezone.utc )

    df_selection = df.query("airport==@airport & has_ga & (@start <= time <= @stop)")

    iterate over flights and pull the data from OpenSky Network

    flights = [] delta_time = pd.Timedelta(minutes=10) for _, row in tqdm(df_selection.iterrows(), total=df_selection.shape[0]): # take at most 10 minutes before and 10 minutes after the landing or go-around start_time = row["time"] - delta_time stop_time = row["time"] + delta_time

    # fetch the data from OpenSky Network
    flights.append(
      opensky.history(
        start=start_time.strftime("%Y-%m-%d %H:%M:%S"),
        stop=stop_time.strftime("%Y-%m-%d %H:%M:%S"),
        callsign=row["callsign"],
        return_flight=True,
      )
    )
    

    The flights can be converted into a Traffic object

    Traffic.from_flights(flights)

    Additional files

    Additional files are available to check the quality of the classification into GA/not GA and the selection of the landing runway. These are:

    validation_table.xlsx: This Excel sheet was manually completed during the review of the samples for each runway in the data set. It provides an estimate of the false positive and false negative rate of the go-around classification. It also provides an estimate of the runway misclassification rate when the airport has two or more parallel runways. The columns with the headers highlighted in red were filled in manually, the rest is generated automatically.

    validation_sample.zip: For each runway, 8 batches of 500 randomly selected trajectories (or as many as available, if fewer than 4000) classified as not having a GA and up to 8 batches of 10 random landings, classified as GA, are plotted. This allows the interested user to visually inspect a random sample of the landings and go-arounds easily.

  20. Financial Statements of Major Companies(2009-2023)

    • kaggle.com
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rishabh Patil (2023). Financial Statements of Major Companies(2009-2023) [Dataset]. https://www.kaggle.com/datasets/rish59/financial-statements-of-major-companies2009-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rishabh Patil
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This is a compiled datasets comprising of data from various companies' 10-K annual reports and balance sheets. The data is a longitudinal or panel data, from year 2009-2022(/23) and also consists of a few bankrupt companies to help for investigating factors. The names of the companies are given according to their Stocks. Companies divided into specific categories.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2020). Datasets for figures and tables [Dataset]. https://catalog.data.gov/dataset/datasets-for-figures-and-tables
Organization logo

Datasets for figures and tables

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 12, 2020
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

Software Model simulations were conducted using WRF version 3.8.1 (available at https://github.com/NCAR/WRFV3) and CMAQ version 5.2.1 (available at https://github.com/USEPA/CMAQ). The meteorological and concentration fields created using these models are too large to archive on ScienceHub, approximately 1 TB, and are archived on EPA’s high performance computing archival system (ASM) at /asm/MOD3APP/pcc/02.NOAH.v.CLM.v.PX/. Figures Figures 1 – 6 and Figure 8: Created using the NCAR Command Language (NCL) scripts (https://www.ncl.ucar.edu/get_started.shtml). NCLD code can be downloaded from the NCAR website (https://www.ncl.ucar.edu/Download/) at no cost. The data used for these figures are archived on EPA’s ASM system and are available upon request. Figures 7, 8b-c, 8e-f, 8h-i, and 9 were created using the AMET utility developed by U.S. EPA/ORD. AMET can be freely downloaded and used at https://github.com/USEPA/AMET. The modeled data paired in space and time provided in this archive can be used to recreate these figures. The data contained in the compressed zip files are organized in comma delimited files with descriptive headers or space delimited files that match tabular data in the manuscript. The data dictionary provides additional information about the files and their contents. This dataset is associated with the following publication: Campbell, P., J. Bash, and T. Spero. Updates to the Noah Land Surface Model in WRF‐CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA, 11(1): 231-256, (2019).

Search
Clear search
Close search
Google apps
Main menu