100+ datasets found
  1. Top 2500 Kaggle Datasets

    • kaggle.com
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saket Kumar (2024). Top 2500 Kaggle Datasets [Dataset]. http://doi.org/10.34740/kaggle/dsv/7637365
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saket Kumar
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.

    Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.

    Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.

    Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.

    Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.

    Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.

    Column Definitions:

    Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.

  2. Big data and business analytics revenue worldwide 2015-2022

    • statista.com
    Updated Aug 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
    Explore at:
    Dataset updated
    Aug 17, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

  3. Job Dataset

    • kaggle.com
    zip
    Updated Sep 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ravender Singh Rana (2023). Job Dataset [Dataset]. https://www.kaggle.com/datasets/ravindrasinghrana/job-description-dataset
    Explore at:
    zip(479575920 bytes)Available download formats
    Dataset updated
    Sep 17, 2023
    Authors
    Ravender Singh Rana
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Job Dataset

    This dataset provides a comprehensive collection of synthetic job postings to facilitate research and analysis in the field of job market trends, natural language processing (NLP), and machine learning. Created for educational and research purposes, this dataset offers a diverse set of job listings across various industries and job types.

    Descriptions for each of the columns in the dataset:

    1. Job Id: A unique identifier for each job posting.
    2. Experience: The required or preferred years of experience for the job.
    3. Qualifications: The educational qualifications needed for the job.
    4. Salary Range: The range of salaries or compensation offered for the position.
    5. Location: The city or area where the job is located.
    6. Country: The country where the job is located.
    7. Latitude: The latitude coordinate of the job location.
    8. Longitude: The longitude coordinate of the job location.
    9. Work Type: The type of employment (e.g., full-time, part-time, contract).
    10. Company Size: The approximate size or scale of the hiring company.
    11. Job Posting Date: The date when the job posting was made public.
    12. Preference: Special preferences or requirements for applicants (e.g., Only Male or Only Female, or Both)
    13. Contact Person: The name of the contact person or recruiter for the job.
    14. Contact: Contact information for job inquiries.
    15. Job Title: The job title or position being advertised.
    16. Role: The role or category of the job (e.g., software developer, marketing manager).
    17. Job Portal: The platform or website where the job was posted.
    18. Job Description: A detailed description of the job responsibilities and requirements.
    19. Benefits: Information about benefits offered with the job (e.g., health insurance, retirement plans).
    20. Skills: The skills or qualifications required for the job.
    21. Responsibilities: Specific responsibilities and duties associated with the job.
    22. Company Name: The name of the hiring company.
    23. Company Profile: A brief overview of the company's background and mission.

    Potential Use Cases:

    • Building predictive models to forecast job market trends.
    • Enhancing job recommendation systems for job seekers.
    • Developing NLP models for resume parsing and job matching.
    • Analyzing regional job market disparities and opportunities.
    • Exploring salary prediction models for various job roles.

    Acknowledgements:

    We would like to express our gratitude to the Python Faker library for its invaluable contribution to the dataset generation process. Additionally, we appreciate the guidance provided by ChatGPT in fine-tuning the dataset, ensuring its quality, and adhering to ethical standards.

    Note:

    Please note that the examples provided are fictional and for illustrative purposes. You can tailor the descriptions and examples to match the specifics of your dataset. It is not suitable for real-world applications and should only be used within the scope of research and experimentation. You can also reach me via email at: rrana157@gmail.com

  4. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  5. Controlled feature selection and compressive big data analytics:...

    • plos.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simeone Marino; Jiachen Xu; Yi Zhao; Nina Zhou; Yiwang Zhou; Ivo D. Dinov (2023). Controlled feature selection and compressive big data analytics: Applications to biomedical and health studies [Dataset]. http://doi.org/10.1371/journal.pone.0202674
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Simeone Marino; Jiachen Xu; Yi Zhao; Nina Zhou; Yiwang Zhou; Ivo D. Dinov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The theoretical foundations of Big Data Science are not fully developed, yet. This study proposes a new scalable framework for Big Data representation, high-throughput analytics (variable selection and noise reduction), and model-free inference. Specifically, we explore the core principles of distribution-free and model-agnostic methods for scientific inference based on Big Data sets. Compressive Big Data analytics (CBDA) iteratively generates random (sub)samples from a big and complex dataset. This subsampling with replacement is conducted on the feature and case levels and results in samples that are not necessarily consistent or congruent across iterations. The approach relies on an ensemble predictor where established model-based or model-free inference techniques are iteratively applied to preprocessed and harmonized samples. Repeating the subsampling and prediction steps many times, yields derived likelihoods, probabilities, or parameter estimates, which can be used to assess the algorithm reliability and accuracy of findings via bootstrapping methods, or to extract important features via controlled variable selection. CBDA provides a scalable algorithm for addressing some of the challenges associated with handling complex, incongruent, incomplete and multi-source data and analytics challenges. Albeit not fully developed yet, a CBDA mathematical framework will enable the study of the ergodic properties and the asymptotics of the specific statistical inference approaches via CBDA. We implemented the high-throughput CBDA method using pure R as well as via the graphical pipeline environment. To validate the technique, we used several simulated datasets as well as a real neuroimaging-genetics of Alzheimer’s disease case-study. The CBDA approach may be customized to provide generic representation of complex multimodal datasets and to provide stable scientific inference for large, incomplete, and multisource datasets.

  6. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2018). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027. What is Big data? Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. Big data analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  7. Data from: Optimized SMRT-UMI protocol produces highly accurate sequence...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Westfall; Mullins James (2023). Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies [Dataset]. http://doi.org/10.5061/dryad.w3r2280w0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    HIV Prevention Trials Networkhttp://www.hptn.org/
    HIV Vaccine Trials Networkhttp://www.hvtn.org/
    PEPFAR
    Authors
    Dylan Westfall; Mullins James
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies. Methods This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies" Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005 For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub. The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub. The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results. Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program. To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper. Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd. Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.

  8. Z

    Automotive CAN bus data: An Example Dataset from the AEGIS Big Data Project

    • data.niaid.nih.gov
    Updated Jul 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaiser, Christian; Stocker, Alexander; Festl, Andreas (2020). Automotive CAN bus data: An Example Dataset from the AEGIS Big Data Project [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3267183
    Explore at:
    Dataset updated
    Jul 8, 2020
    Dataset provided by
    Virtual Vehicle Research Center, Graz, Austria
    Authors
    Kaiser, Christian; Stocker, Alexander; Festl, Andreas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here you find an example research data dataset for the automotive demonstrator within the "AEGIS - Advanced Big Data Value Chain for Public Safety and Personal Security" big data project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732189. The time series data has been collected during trips conducted by three drivers driving the same vehicle in Austria.

    The dataset contains 20Hz sampled CAN bus data from a passenger vehicle, e.g. WheelSpeed FL (speed of the front left wheel), SteerAngle (steering wheel angle), Role, Pitch, and accelerometer values per direction.

    GPS data from the vehicle (see signals 'Latitude_Vehicle' and 'Longitude_Vehicle' in h5 group 'Math') and GPS data from the IMU device (see signals 'Latitude_IMU', 'Longitude_IMU' and 'Time_IMU' in h5 group 'Math') are included. However, as it had to be exported with single-precision, we lost some precision for those GPS values.

    For data analysis we use R and R Studio (https://www.rstudio.com/) and the library h5.

    e.g. check file with R code:

    library(h5)

    f <- h5file("file path/20181113_Driver1_Trip1.hdf")

    summary(f["CAN/Yawrate1"][,])

    summary(f["Math/Latitude_IMU"][,])

    h5close(f)

  9. Data from: Code4ML: a Large-scale Dataset of annotated Machine Learning Code...

    • zenodo.org
    csv
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous authors; Anonymous authors (2023). Code4ML: a Large-scale Dataset of annotated Machine Learning Code [Dataset]. http://doi.org/10.5281/zenodo.6607065
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous authors; Anonymous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.

    The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.

    Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.

    The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.

    Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).

    As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).

    The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.

  10. Top 1000 Kaggle Datasets

    • kaggle.com
    zip
    Updated Jan 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trrishan (2022). Top 1000 Kaggle Datasets [Dataset]. https://www.kaggle.com/datasets/notkrishna/top-1000-kaggle-datasets
    Explore at:
    zip(34269 bytes)Available download formats
    Dataset updated
    Jan 3, 2022
    Authors
    Trrishan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    From wiki

    Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practitioners. Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

    Kaggle got its start in 2010 by offering machine learning competitions and now also offers a public data platform, a cloud-based workbench for data science, and Artificial Intelligence education. Its key personnel were Anthony Goldbloom and Jeremy Howard. Nicholas Gruen was founding chair succeeded by Max Levchin. Equity was raised in 2011 valuing the company at $25 million. On 8 March 2017, Google announced that they were acquiring Kaggle.[1][2]

    Source: Kaggle

  11. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  12. Supply Chain DataSet

    • kaggle.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amir Motefaker (2023). Supply Chain DataSet [Dataset]. https://www.kaggle.com/datasets/amirmotefaker/supply-chain-dataset
    Explore at:
    zip(9340 bytes)Available download formats
    Dataset updated
    Jun 1, 2023
    Authors
    Amir Motefaker
    Description

    Supply chain analytics is a valuable part of data-driven decision-making in various industries such as manufacturing, retail, healthcare, and logistics. It is the process of collecting, analyzing and interpreting data related to the movement of products and services from suppliers to customers.

  13. Z

    CompanyKG Dataset V2.0: A Large-Scale Heterogeneous Graph for Company...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lele Cao; Vilhelm von Ehrenheim; Mark Granroth-Wilding; Richard Anselmo Stahl; Drew McCornack; Armin Catovic; Dhiana Deva Cavacanti Rocha (2024). CompanyKG Dataset V2.0: A Large-Scale Heterogeneous Graph for Company Similarity Quantification [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7957401
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    EQT
    Authors
    Lele Cao; Vilhelm von Ehrenheim; Mark Granroth-Wilding; Richard Anselmo Stahl; Drew McCornack; Armin Catovic; Dhiana Deva Cavacanti Rocha
    Description

    CompanyKG is a heterogeneous graph consisting of 1,169,931 nodes and 50,815,503 undirected edges, with each node representing a real-world company and each edge signifying a relationship between the connected pair of companies.

    Edges: We model 15 different inter-company relations as undirected edges, each of which corresponds to a unique edge type. These edge types capture various forms of similarity between connected company pairs. Associated with each edge of a certain type, we calculate a real-numbered weight as an approximation of the similarity level of that type. It is important to note that the constructed edges do not represent an exhaustive list of all possible edges due to incomplete information. Consequently, this leads to a sparse and occasionally skewed distribution of edges for individual relation/edge types. Such characteristics pose additional challenges for downstream learning tasks. Please refer to our paper for a detailed definition of edge types and weight calculations.

    Nodes: The graph includes all companies connected by edges defined previously. Each node represents a company and is associated with a descriptive text, such as "Klarna is a fintech company that provides support for direct and post-purchase payments ...". To comply with privacy and confidentiality requirements, we encoded the text into numerical embeddings using four different pre-trained text embedding models: mSBERT (multilingual Sentence BERT), ADA2, SimCSE (fine-tuned on the raw company descriptions) and PAUSE.

    Evaluation Tasks. The primary goal of CompanyKG is to develop algorithms and models for quantifying the similarity between pairs of companies. In order to evaluate the effectiveness of these methods, we have carefully curated three evaluation tasks:

    Similarity Prediction (SP). To assess the accuracy of pairwise company similarity, we constructed the SP evaluation set comprising 3,219 pairs of companies that are labeled either as positive (similar, denoted by "1") or negative (dissimilar, denoted by "0"). Of these pairs, 1,522 are positive and 1,697 are negative.

    Competitor Retrieval (CR). Each sample contains one target company and one of its direct competitors. It contains 76 distinct target companies, each of which has 5.3 competitors annotated in average. For a given target company A with N direct competitors in this CR evaluation set, we expect a competent method to retrieve all N competitors when searching for similar companies to A.

    Similarity Ranking (SR) is designed to assess the ability of any method to rank candidate companies (numbered 0 and 1) based on their similarity to a query company. Paid human annotators, with backgrounds in engineering, science, and investment, were tasked with determining which candidate company is more similar to the query company. It resulted in an evaluation set comprising 1,856 rigorously labeled ranking questions. We retained 20% (368 samples) of this set as a validation set for model development.

    Edge Prediction (EP) evaluates a model's ability to predict future or missing relationships between companies, providing forward-looking insights for investment professionals. The EP dataset, derived (and sampled) from new edges collected between April 6, 2023, and May 25, 2024, includes 40,000 samples, with edges not present in the pre-existing CompanyKG (a snapshot up until April 5, 2023).

    Background and Motivation

    In the investment industry, it is often essential to identify similar companies for a variety of purposes, such as market/competitor mapping and Mergers & Acquisitions (M&A). Identifying comparable companies is a critical task, as it can inform investment decisions, help identify potential synergies, and reveal areas for growth and improvement. The accurate quantification of inter-company similarity, also referred to as company similarity quantification, is the cornerstone to successfully executing such tasks. However, company similarity quantification is often a challenging and time-consuming process, given the vast amount of data available on each company, and the complex and diversified relationships among them.

    While there is no universally agreed definition of company similarity, researchers and practitioners in PE industry have adopted various criteria to measure similarity, typically reflecting the companies' operations and relationships. These criteria can embody one or more dimensions such as industry sectors, employee profiles, keywords/tags, customers' review, financial performance, co-appearance in news, and so on. Investment professionals usually begin with a limited number of companies of interest (a.k.a. seed companies) and require an algorithmic approach to expand their search to a larger list of companies for potential investment.

    In recent years, transformer-based Language Models (LMs) have become the preferred method for encoding textual company descriptions into vector-space embeddings. Then companies that are similar to the seed companies can be searched in the embedding space using distance metrics like cosine similarity. The rapid advancements in Large LMs (LLMs), such as GPT-3/4 and LLaMA, have significantly enhanced the performance of general-purpose conversational models. These models, such as ChatGPT, can be employed to answer questions related to similar company discovery and quantification in a Q&A format.

    However, graph is still the most natural choice for representing and learning diverse company relations due to its ability to model complex relationships between a large number of entities. By representing companies as nodes and their relationships as edges, we can form a Knowledge Graph (KG). Utilizing this KG allows us to efficiently capture and analyze the network structure of the business landscape. Moreover, KG-based approaches allow us to leverage powerful tools from network science, graph theory, and graph-based machine learning, such as Graph Neural Networks (GNNs), to extract insights and patterns to facilitate similar company analysis. While there are various company datasets (mostly commercial/proprietary and non-relational) and graph datasets available (mostly for single link/node/graph-level predictions), there is a scarcity of datasets and benchmarks that combine both to create a large-scale KG dataset expressing rich pairwise company relations.

    Source Code and Tutorial:https://github.com/llcresearch/CompanyKG2

    Paper: to be published

  14. d

    Making Predictions using Large Scale Gaussian Processes

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Making Predictions using Large Scale Gaussian Processes [Dataset]. https://catalog.data.gov/dataset/making-predictions-using-large-scale-gaussian-processes
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    Dashlink
    Description

    One of the key problems that arises in many areas is to estimate a potentially nonlinear function [tex] G(x, \theta)[/tex] given input and output samples tex [/tex] so that [tex]y approx G(x, \theta)[/tex]. There are many approaches to addressing this regression problem. Neural networks, regression trees, and many other methods have been developed to estimate [tex]$G$[/tex] given the input output pair tex [/tex]. One method that I have worked with is called Gaussian process regression. There many good texts and papers on the subject. For more technical information on the method and its applications see: http://www.gaussianprocess.org/ A key problem that arises in developing these models on very large data sets is that it ends up requiring an [tex]O(N^3)[/tex] computation where N is the number of data points and the training sample. Obviously this becomes very problematic when N is large. I discussed this problem with Leslie Foster, a mathematics professor at San Jose State University. He, along with some of his students, developed a method to address this problem based on Cholesky decomposition and pivoting. He also shows that this leads to a numerically stable result. If ou're interested in some light reading, I’d suggest you take a look at his recent paper (which was accepted in the Journal of Machine Learning Research) posted on dashlink. We've also posted code for you to try it out. Let us know how it goes. If you are interested in applications of this method in the area of prognostics, check out our new paper on the subject which was published in IEEE Transactions on Systems, Man, and Cybernetics.

  15. w

    Amazon Web Services - Public Data Sets

    • data.wu.ac.at
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global (2013). Amazon Web Services - Public Data Sets [Dataset]. https://data.wu.ac.at/schema/datahub_io/NTYxNjkxNmYtNmZlNS00N2EwLWJkYTktZjFjZWJkNTM2MTNm
    Explore at:
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Global
    Description

    About

    From website:

    Public Data Sets on AWS provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. AWS is hosting the public data sets at no charge for the community, and like all AWS services, users pay only for the compute and storage they use for their own applications. An initial list of data sets is already available, and more will be added soon.

    Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from their Amazon Elastic Compute Cloud (Amazon EC2) instances and start computing on the data within minutes. Users can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, users can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.

  16. Revenue of leading data center markets worldwide 2018-2029

    • statista.com
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petroc Taylor (2025). Revenue of leading data center markets worldwide 2018-2029 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Petroc Taylor
    Description

    The revenue is forecast to experience significant growth in all regions in 2029. From the selected regions, the ranking by revenue in the data center market is forecast to be led by the United States with 212.06 billion U.S. dollars. In contrast, the ranking is trailed by the United Kingdom with 23.76 billion U.S. dollars, recording a difference of 188.3 billion U.S. dollars to the United States. Find further statistics on other topics such as a comparison of the revenue in the world and a comparison of the revenue in the United States.The Statista Market Insights cover a broad range of additional markets.

  17. d

    Replication Data for: Revisiting 'The Rise and Decline' in a Population of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill (2023). Replication Data for: Revisiting 'The Rise and Decline' in a Population of Peer Production Projects [Dataset]. http://doi.org/10.7910/DVN/SG3LP1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill
    Description

    This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.

  18. p

    Data from: MIMIC-IV-Ext-Instr: A Dataset of 450K+ EHR-Grounded...

    • physionet.org
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhenbang Wu; Anant Dadu; Mike Nalls; Faraz Faghri; Jimeng Sun (2025). MIMIC-IV-Ext-Instr: A Dataset of 450K+ EHR-Grounded Instruction-Following Examples [Dataset]. http://doi.org/10.13026/e5bq-pr14
    Explore at:
    Dataset updated
    Sep 9, 2025
    Authors
    Zhenbang Wu; Anant Dadu; Mike Nalls; Faraz Faghri; Jimeng Sun
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    Large language models (LLMs) have shown impressive capabilities in solving a wide range of tasks based on human instructions. However, developing a conversational AI assistant for electronic health record (EHR) data remains challenging due to the lack of large-scale instruction-following datasets. To address this, we present MIMIC-IV-Ext-Instr, a dataset containing over 450K open-ended, instruction-following examples generated using GPT-3.5 on a HIPAA-compliant platform. Derived from the MIMIC-IV EHR database, MIMIC-IV-Ext-Instr spans a wide range of topics and is specifically designed to support instruction-tuning of general-purpose LLMs for diverse clinical applications.

  19. f

    Data from: Large-Scale Learning of Structure−Activity Relationships Using a...

    • acs.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georg Hinselmann; Lars Rosenbaum; Andreas Jahn; Nikolas Fechner; Claude Ostermann; Andreas Zell (2023). Large-Scale Learning of Structure−Activity Relationships Using a Linear Support Vector Machine and Problem-Specific Metrics [Dataset]. http://doi.org/10.1021/ci100073w.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    ACS Publications
    Authors
    Georg Hinselmann; Lars Rosenbaum; Andreas Jahn; Nikolas Fechner; Claude Ostermann; Andreas Zell
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The goal of this study was to adapt a recently proposed linear large-scale support vector machine to large-scale binary cheminformatics classification problems and to assess its performance on various benchmarks using virtual screening performance measures. We extended the large-scale linear support vector machine library LIBLINEAR with state-of-the-art virtual high-throughput screening metrics to train classifiers on whole large and unbalanced data sets. The formulation of this linear support machine has an excellent performance if applied to high-dimensional sparse feature vectors. An additional advantage is the average linear complexity in the number of non-zero features of a prediction. Nevertheless, the approach assumes that a problem is linearly separable. Therefore, we conducted an extensive benchmarking to evaluate the performance on large-scale problems up to a size of 175000 samples. To examine the virtual screening performance, we determined the chemotype clusters using Feature Trees and integrated this information to compute weighted AUC-based performance measures and a leave-cluster-out cross-validation. We also considered the BEDROC score, a metric that was suggested to tackle the early enrichment problem. The performance on each problem was evaluated by a nested cross-validation and a nested leave-cluster-out cross-validation. We compared LIBLINEAR against a Naïve Bayes classifier, a random decision forest classifier, and a maximum similarity ranking approach. These reference approaches were outperformed in a direct comparison by LIBLINEAR. A comparison to literature results showed that the LIBLINEAR performance is competitive but without achieving results as good as the top-ranked nonlinear machines on these benchmarks. However, considering the overall convincing performance and computation time of the large-scale support vector machine, the approach provides an excellent alternative to established large-scale classification approaches.

  20. N

    Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aa8c95e0-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel, Alabama
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.

    Key observations

    The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Excel is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Excel total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Saket Kumar (2024). Top 2500 Kaggle Datasets [Dataset]. http://doi.org/10.34740/kaggle/dsv/7637365
Organization logo

Top 2500 Kaggle Datasets

Explore, Analyze, Innovate: The Best of Kaggle's Data at Your Fingertips

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Feb 16, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Saket Kumar
License

http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

Description

This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.

Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.

Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.

Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.

Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.

Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.

Column Definitions:

Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.

Search
Clear search
Close search
Google apps
Main menu