Big Data as a Service Market Size 2024-2028
The big data as a service market size is forecast to increase by USD 41.20 billion at a CAGR of 28.45% between 2023 and 2028.
The market is experiencing significant growth due to the increasing volume of data and the rising demand for advanced data insights. Machine learning algorithms and artificial intelligence are driving product quality and innovation in this sector. Hybrid cloud solutions are gaining popularity, offering the benefits of both private and public cloud platforms for optimal data storage and scalability. Industry standards for data privacy and security are increasingly important, as large amounts of data pose unique risks. The BDaaS market is expected to continue its expansion, providing valuable data insights to businesses across various industries.
What will be the Big Data as a Service Market Size During the Forecast Period?
Request Free Sample
Big Data as a Service (BDaaS) has emerged as a game-changer in the business world, enabling organizations to harness the power of big data without the need for extensive infrastructure and expertise. This service model offers various components such as data management, analytics, and visualization tools, enabling businesses to derive valuable insights from their data. BDaaS encompasses several key components that drive market growth. These include Business Intelligence (BI), Data Science, Data Quality, and Data Security. BI provides organizations with the ability to analyze data and gain insights to make informed decisions.
Data Science, on the other hand, focuses on extracting meaningful patterns and trends from large datasets using advanced algorithms. Data Quality is a critical component of BDaaS, ensuring that the data being analyzed is accurate, complete, and consistent. Data Security is another essential aspect, safeguarding sensitive data from cybersecurity threats and data breaches. Moreover, BDaaS offers various data pipelines, enabling seamless data integration and data lifecycle management. Network Analysis, Real-time Analytics, and Predictive Analytics are other essential components, providing businesses with actionable insights in real-time and enabling them to anticipate future trends. Data Mining, Machine Learning Algorithms, and Data Visualization Tools are other essential components of BDaaS.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Type
Data analytics-as-a-Service
Hadoop-as-a-service
Data-as-a-service
Deployment
Public cloud
Hybrid cloud
Private cloud
Geography
North America
Canada
US
APAC
China
Europe
Germany
UK
South America
Middle East and Africa
By Type Insights
The data analytics-as-a-service segment is estimated to witness significant growth during the forecast period.
Big Data as a Service (BDaaS) is a significant market segment, highlighted by the availability of Hadoop-as-a-Service solutions. These offerings enable businesses to access essential datasets on-demand without the burden of expensive infrastructure. DAaaS solutions facilitate real-time data analysis, empowering organizations to make informed decisions. The DAaaS landscape is expanding rapidly as companies acknowledge its value in enhancing internal data. Integrating DAaaS with big data systems amplifies analytics capabilities, creating a vibrant market landscape. Organizations can leverage diverse datasets to gain a competitive edge, driving the growth of the global BDaaS market. In the context of digital transformation, cloud computing, IoT, and 5G technologies, BDaaS solutions offer optimal resource utilization.
However, regulatory scrutiny poses challenges, necessitating stringent data security measures. Retail and other industries stand to benefit significantly from BDaaS, particularly with distributed computing solutions. DAaaS adoption is a strategic investment for businesses seeking to capitalize on the power of external data for valuable insights.
Get a glance at the market report of share of various segments Request Free Sample
The Data analytics-as-a-Service segment was valued at USD 2.59 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 35% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions Request Free Sample
Big Data as a Service Market analysis, North America is experiencing signif
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling.
The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly.
From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey.
Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond.
We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival.
To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values.
Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
This dataset of historical poor law cases was created as part of a project aiming to assess the implications of the introduction of Artificial Intelligence (AI) into legal systems in Japan and the United Kingdom. The project was jointly funded by the UK’s Economic and Social Research Council, part of UKRI, and the Japanese Society and Technology Agency (JST), and involved collaboration between Cambridge University (the Centre for Business Research, Department of Computer Science and Faculty of Law) and Hitotsubashi University, Tokyo (the Graduate Schools of Law and Business Administration). As part of the project, a dataset of historic poor law cases was created to facilitate the analysis of legal texts using natural language processing methods. The dataset contains judgments of cases which have been annotated to facilitate computational analysis. Specifically, they make it possible to see how legal terms have evolved over time in the area of disputes over the law governing settlement by hiring.
A World Economic Forum meeting at Davos 2019 heralded the dawn of 'Society 5.0' in Japan. Its goal: creating a 'human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space.' Using Artificial Intelligence (AI), robotics and data, 'Society 5.0' proposes to '...enable the provision of only those products and services that are needed to the people that need them at the time they are needed, thereby optimizing the entire social and organizational system.' The Japanese government accepts that realising this vision 'will not be without its difficulties,' but intends 'to face them head-on with the aim of being the first in the world as a country facing challenging issues to present a model future society.' The UK government is similarly committed to investing in AI and likewise views the AI as central to engineering a more profitable economy and prosperous society.
This vision is, however, starting to crystallise in the rhetoric of LegalTech developers who have the data-intensive-and thus target-rich-environment of law in their sights. Buoyed by investment and claims of superior decision-making capabilities over human lawyers and judges, LegalTech is now being deputised to usher in a new era of 'smart' law built on AI and Big Data. While there are a number of bold claims made about the capabilities of these technologies, comparatively little attention has been directed to more fundamental questions about how we might assess the feasibility of using them to replicate core aspects of legal process, and ensuring the public has a meaningful say in the development and implementation.
This innovative and timely research project intends to approach these questions from a number of vectors. At a theoretical level, we consider the likely consequences of this step using a Horizon Scanning methodology developed in collaboration with our Japanese partners and an innovative systemic-evolutionary model of law. Many aspects of legal reasoning have algorithmic features which could lend themselves to automation. However, an evolutionary perspective also points to features of legal reasoning which are inconsistent with ML: including the reflexivity of legal knowledge and the incompleteness of legal rules at the point where they encounter the 'chaotic' and unstructured data generated by other social sub-systems. We will test our theory by developing a hierarchical model (or ontology), derived from our legal expertise and public available datasets, for classifying employment relationships under UK law. This will let us probe the extent to which legal reasoning can be modelled using less computational-intensive methods such as Markov Models and Monte Carlo Trees.
Building upon these theoretical innovations, we will then turn our attention from modelling a legal domain using historical data to exploring whether the outcome of legal cases can be reliably predicted using various technique for optimising datasets. For this we will use a data set comprised of 24,179 cases from the High Court of England and Wales. This will allow us to harness Natural Language Processing (NLP) techniques such as named entity recognition (to identify relevant parties) and sentiment analysis (to analyse opinions and determine the disposition of a party) in addition to identifying the main legal and factual points of the dispute, remedies, costs, and trial durations. By trailing various predictive heuristics and ML techniques against this dataset we hope to develop a more granular understanding as to the feasibility of predicting dispute outcomes and insight to what factors are relevant for legal decision-making. This will allow us to then undertake a comparative analysis with the results of existing studies and shed light on the legal contexts and questions where AI can and cannot be used to produce accurate and repeatable results.
The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.
The full documentation is available here. For basic field details, please see the data dictionary.
Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000.
This dataset was created by the United States Census Bureau.
Which countries have made the largest improvements in life expectancy? Based on current trends, how long will it take each country to catch up to today’s best performers?
You can use Kernels to analyze, share, and discuss this data on Kaggle, but if you’re looking for real-time updates and bigger data, check out the data on BigQuery, too: https://cloud.google.com/bigquery/public-data/international-census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Flat population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Flat. The dataset can be utilized to understand the population distribution of Big Flat by age. For example, using this dataset, we can identify the largest age group in Big Flat.
Key observations
The largest age group in Big Flat, AR was for the group of age 15 to 19 years years with a population of 16 (25%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Big Flat, AR was the 5 to 9 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Flat Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Stone City population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Big Stone City.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
USHAP (USHighAirPollutants) is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for the United States. It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in the United States from 2000 to 2020. Our daily PM2.5 estimates agree well with ground measurements with an average cross-validation coefficient of determination (CV-R2) of 0.82 and normalized root-mean-square error (NRMSE) of 0.40, respectively. All the data will be made public online once our paper is accepted, and if you want to use the USHighPM2.5 dataset for related scientific research, please contact us (Email: weijing_rs@163.com; weijing@umd.edu). Wei, J., Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We introduce a large-scale dataset of the complete texts of free/open source software (FOSS) license variants. To assemble it we have collected from the Software Heritage archive—the largest publicly available archive of FOSS source code with accompanying development history—all versions of files whose names are commonly used to convey licensing terms to software users and developers. The dataset consists of 6.5 million unique license files that can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. Additional metadata about shipped license files are also provided, making the dataset ready to use in various contexts; they include: file length measures, detected MIME type, detected SPDX license (using ScanCode), example origin (e.g., GitHub repository), oldest public commit in which the license appeared. The dataset is released as open data as an archive file containing all deduplicated license blobs, plus several portable CSV files for metadata, referencing blobs via cryptographic checksums.
For more details see the included README file and companion paper:
Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.
If you use this dataset for research purposes, please acknowledge its use by citing the above paper.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data underscores the importance of public opinion in shaping foreign policy, with a specific focus on Indonesia's position on the Palestinian-Israeli conflict. Indonesia's steadfast support for Palestine is widely acknowledged. This research is crucial in understanding the significant impact of Indonesian public opinion on the Palestine-Israel conflict and the strength of Indonesia's foreign and energy policy in this context. The research results show that, according to public comments on X platform, the support for Indonesian foreign policy towards Palestine is very strong. The Indonesian public's support aligns with the government's foreign policy, which also strongly supports Palestine.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a core component of Bitcoin, is a distributed, public ledger recording transactions. Its usage allows secure peer-to-peer communication by linking blocks containing hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a decentralized digital currency (cryptocurrency) which leverages the Blockchain to store transactions in a distributed manner in order to mitigate against flaws in the financial industry.
Nearly ten years after its inception, Bitcoin and other cryptocurrencies experienced an explosion in popular awareness. The value of Bitcoin, on the other hand, has experienced more volatility. Meanwhile, as use cases of Bitcoin and Blockchain grow, mature, and expand, hype and controversy have swirled.
In this dataset, you will have access to information about blockchain blocks and transactions. All historical data are in the bigquery-public-data:crypto_bitcoin
dataset. It’s updated it every 10 minutes. The data can be joined with historical prices in kernels. See available similar datasets here: https://www.kaggle.com/datasets?search=bitcoin.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_bitcoin.[TABLENAME]
. Fork this kernel to get started.
Allen Day (Twitter | Medium), Google Cloud Developer Advocate & Colin Bookman, Google Cloud Customer Engineer retrieve data from the Bitcoin network using a custom client available on GitHub that they built with the bitcoinj
Java library. Historical data from the origin block to 2018-01-31 were loaded in bulk to two BigQuery tables, blocks_raw and transactions. These tables contain fresh data, as they are now appended when new blocks are broadcast to the Bitcoin network. For additional information visit the Google Cloud Big Data and Machine Learning Blog post "Bitcoin in BigQuery: Blockchain analytics on public data".
Photo by Andre Francois on Unsplash.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset "Motamot" containing 7,058 data points labeled with Positive and Negative sentiments, tailored specifically for Political Sentiment Analysis in the Bengali language. The dataset comprises 4,132 instances labeled as Positive and 2,926 instances labeled as Negative sentiments.
Specifics of the Core Data: —------------------------------- Train 5647, Test 706, Validation 705
Train : —-------------------------------
Positive: 3306
Negative: 2341
Test : —-------------------------------
Positive: 413
Negative: 293
Validation : —-------------------------------
Positive: 413
Negative: 292
The data and programs replicate tables and figures from "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care", by Mullainathan and Obermeyer. Please see the README file for additional details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Big Spring, TX, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Spring median household income. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Please cite the following paper when using this dataset: N. Thakur, “Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions,” Preprints, 2022, DOI: 10.20944/preprints202206.0383.v1 Abstract The exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and use cases in assisted living, military, healthcare, firefighting, and industries. With the projected increase in the diverse uses of exoskeletons in the next few years in these application domains and beyond, it is crucial to study, interpret, and analyze user perspectives, public opinion, reviews, and feedback related to exoskeletons, for which a dataset is necessary. The Internet of Everything era of today's living, characterized by people spending more time on the Internet than ever before, holds the potential for developing such a dataset by mining relevant web behavior data from social media communications, which have increased exponentially in the last few years. Twitter, one such social media platform, is highly popular amongst all age groups, who communicate on diverse topics including but not limited to news, current events, politics, emerging technologies, family, relationships, and career opportunities, via tweets, while sharing their views, opinions, perspectives, and feedback towards the same. Therefore, this work presents a dataset of about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. Instructions: This dataset contains about 140,000 Tweets related to exoskeletons. that were mined for a period of 5-years from May 21, 2017, to May 21, 2022. The tweets contain diverse forms of communications and conversations which communicate user interests, user perspectives, public opinion, reviews, feedback, suggestions, etc., related to exoskeletons. The dataset contains only tweet identifiers (Tweet IDs) due to the terms and conditions of Twitter to re-distribute Twitter data only for research purposes. They need to be hydrated to be used. The process of retrieving a tweet's complete information (such as the text of the tweet, username, user ID, date and time, etc.) using its ID is known as the hydration of a tweet ID. The Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) or any similar application may be used for hydrating this dataset. Data Description This dataset consists of 7 .txt files. The following shows the number of Tweet IDs and the date range (of the associated tweets) in each of these files. Filename: Exoskeleton_TweetIDs_Set1.txt (Number of Tweet IDs – 22945, Date Range of Tweets - July 20, 2021 – May 21, 2022) Filename: Exoskeleton_TweetIDs_Set2.txt (Number of Tweet IDs – 19416, Date Range of Tweets - Dec 1, 2020 – July 19, 2021) Filename: Exoskeleton_TweetIDs_Set3.txt (Number of Tweet IDs – 16673, Date Range of Tweets - April 29, 2020 - Nov 30, 2020) Filename: Exoskeleton_TweetIDs_Set4.txt (Number of Tweet IDs – 16208, Date Range of Tweets - Oct 5, 2019 - Apr 28, 2020) Filename: Exoskeleton_TweetIDs_Set5.txt (Number of Tweet IDs – 17983, Date Range of Tweets - Feb 13, 2019 - Oct 4, 2019) Filename: Exoskeleton_TweetIDs_Set6.txt (Number of Tweet IDs – 34009, Date Range of Tweets - Nov 9, 2017 - Feb 12, 2019) Filename: Exoskeleton_TweetIDs_Set7.txt (Number of Tweet IDs – 11351, Date Range of Tweets - May 21, 2017 - Nov 8, 2017) Here, the last date for May is May 21 as it was the most recent date at the time of data collection. The dataset would be updated soon to incorporate more recent tweets.
The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points).
All of the Digital City Map (DCM) datasets are featured on the Streets App
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
This dataset contains FEMA applicant-level data for the Individuals and Households Program (IHP). All PII information has been removed. The location is represented by county, city, and zip code. This dataset contains Individual Assistance (IA) applications from DR1439 (declared in 2002) to those declared over 30 days ago. The full data set is refreshed on an annual basis and refreshed weekly to update disasters declared in the last 18 months. This dataset includes all major disasters and includes only valid registrants (applied in a declared county, within the registration period, having damage due to the incident and damage within the incident period). Information about individual data elements and descriptions are listed in the metadata information within the dataset.rnValid registrants may be eligible for IA assistance, which is intended to meet basic needs and supplement disaster recovery efforts. IA assistance is not intended to return disaster-damaged property to its pre-disaster condition. Disaster damage to secondary or vacation homes does not qualify for IHP assistance.rnData comes from FEMA's National Emergency Management Information System (NEMIS) with raw, unedited, self-reported content and subject to a small percentage of human error.rnAny financial information is derived from NEMIS and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting. rnCitation: The Agency’s preferred citation for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page, Citing Data section: https://www.fema.gov/about/openfema/terms-conditions.rnDue to the size of this file, tools other than a spreadsheet may be required to analyze, visualize, and manipulate the data. MS Excel will not be able to process files this large without data loss. It is recommended that a database (e.g., MS Access, MySQL, PostgreSQL, etc.) be used to store and manipulate data. Other programming tools such as R, Apache Spark, and Python can also be used to analyze and visualize data. Further, basic Linux/Unix tools can be used to manipulate, search, and modify large files.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.rnThis dataset is scheduled to be superceded by Valid Registrations Version 2 by early CY 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Sandy population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Big Sandy.
The dataset will have the following datasets when applicable
Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is the result of a full-population crawl of the .gov.uk web domain, aiming to capture a full picture of the scope of public-facing government activity online and the links between different government bodies.
Local governments have been developing online services, aiming to better serve the public and reduce administrative costs. However, the impact of this work, and the links between governments’ online and offline activities, remain uncertain. The overall research question for this research examines whether local e-government has met these expectations, of Digital Era Governance and of its practitioners. Aim was to directly analyse the structure and content of government online. It shows that recent digital-centric public administration theories, typified by the Digital Era Governance quasi-paradigm, are not empirically supported by the UK local government experience.
The data consist of a file of individual Uniform Resource Locators (URLs) fetched during the crawl, and a further file containing pairs of URLs reflecting the Hypertext Markup Language (HTML) links between them. In addition, a GraphML format file is presented for a version of the data reduced to third-level-domains, with accompanying attribute data for the publishing government organisations and calculated webometric statistics based on the third-level-domain link network.
This project engages with the Digital Era Governance (DEG) work of Dunleavy et. al. and draws upon new empirical methods to explore local government and its use of Internet-related technology. It challenges the existing literature, arguing that e-government benefits have been oversold, particularly for transactional services; it updates DEG with insights from local government.
The distinctive methodological approach is to use full-population datasets and large-scale web data to provide an empirical foundation for theoretical development, and to test existing theorists’ claims. A new full-population web crawl of .gov.uk is used to analyse the shape and structure of online government using webometrics. Tools from computer science, such as automated classification, are used to enrich our understanding of the dataset. A new full-population panel dataset is constructed covering council performance, cost, web quality, and satisfaction.
The local government web shows a wide scope of provision but only limited evidence in support of the existing rhetorics of Internet-enabled service delivery. In addition, no evidence is found of a link between web development and performance, cost, or satisfaction. DEG is challenged and developed in light of these findings.
The project adds value by developing new methods for the use of big data in public administration, by empirically challenging long-held assumptions on the value of the web for government, and by building a foundation of knowledge about local government online to be built on by further research.
This is an ESRC-funded DPhil research project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Springs population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Springs. The dataset can be utilized to understand the population distribution of Big Springs by age. For example, using this dataset, we can identify the largest age group in Big Springs.
Key observations
The largest age group in Big Springs, NE was for the group of age 70 to 74 years years with a population of 60 (12.53%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Big Springs, NE was the 75 to 79 years years with a population of 7 (1.46%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Springs Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Falls town population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Big Falls town.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Big Data as a Service Market Size 2024-2028
The big data as a service market size is forecast to increase by USD 41.20 billion at a CAGR of 28.45% between 2023 and 2028.
The market is experiencing significant growth due to the increasing volume of data and the rising demand for advanced data insights. Machine learning algorithms and artificial intelligence are driving product quality and innovation in this sector. Hybrid cloud solutions are gaining popularity, offering the benefits of both private and public cloud platforms for optimal data storage and scalability. Industry standards for data privacy and security are increasingly important, as large amounts of data pose unique risks. The BDaaS market is expected to continue its expansion, providing valuable data insights to businesses across various industries.
What will be the Big Data as a Service Market Size During the Forecast Period?
Request Free Sample
Big Data as a Service (BDaaS) has emerged as a game-changer in the business world, enabling organizations to harness the power of big data without the need for extensive infrastructure and expertise. This service model offers various components such as data management, analytics, and visualization tools, enabling businesses to derive valuable insights from their data. BDaaS encompasses several key components that drive market growth. These include Business Intelligence (BI), Data Science, Data Quality, and Data Security. BI provides organizations with the ability to analyze data and gain insights to make informed decisions.
Data Science, on the other hand, focuses on extracting meaningful patterns and trends from large datasets using advanced algorithms. Data Quality is a critical component of BDaaS, ensuring that the data being analyzed is accurate, complete, and consistent. Data Security is another essential aspect, safeguarding sensitive data from cybersecurity threats and data breaches. Moreover, BDaaS offers various data pipelines, enabling seamless data integration and data lifecycle management. Network Analysis, Real-time Analytics, and Predictive Analytics are other essential components, providing businesses with actionable insights in real-time and enabling them to anticipate future trends. Data Mining, Machine Learning Algorithms, and Data Visualization Tools are other essential components of BDaaS.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Type
Data analytics-as-a-Service
Hadoop-as-a-service
Data-as-a-service
Deployment
Public cloud
Hybrid cloud
Private cloud
Geography
North America
Canada
US
APAC
China
Europe
Germany
UK
South America
Middle East and Africa
By Type Insights
The data analytics-as-a-service segment is estimated to witness significant growth during the forecast period.
Big Data as a Service (BDaaS) is a significant market segment, highlighted by the availability of Hadoop-as-a-Service solutions. These offerings enable businesses to access essential datasets on-demand without the burden of expensive infrastructure. DAaaS solutions facilitate real-time data analysis, empowering organizations to make informed decisions. The DAaaS landscape is expanding rapidly as companies acknowledge its value in enhancing internal data. Integrating DAaaS with big data systems amplifies analytics capabilities, creating a vibrant market landscape. Organizations can leverage diverse datasets to gain a competitive edge, driving the growth of the global BDaaS market. In the context of digital transformation, cloud computing, IoT, and 5G technologies, BDaaS solutions offer optimal resource utilization.
However, regulatory scrutiny poses challenges, necessitating stringent data security measures. Retail and other industries stand to benefit significantly from BDaaS, particularly with distributed computing solutions. DAaaS adoption is a strategic investment for businesses seeking to capitalize on the power of external data for valuable insights.
Get a glance at the market report of share of various segments Request Free Sample
The Data analytics-as-a-Service segment was valued at USD 2.59 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 35% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions Request Free Sample
Big Data as a Service Market analysis, North America is experiencing signif