55 datasets found
  1. Big data and business analytics revenue worldwide 2015-2022

    • statista.com
    Updated Aug 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
    Explore at:
    Dataset updated
    Aug 17, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

  2. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  3. Visualizing Chicago Crime Data

    • kaggle.com
    zip
    Updated Jul 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elijah Toumoua (2022). Visualizing Chicago Crime Data [Dataset]. https://www.kaggle.com/datasets/elijahtoumoua/chicago-analysis-of-crime-data-dashboard
    Explore at:
    zip(94861784 bytes)Available download formats
    Dataset updated
    Jul 1, 2022
    Authors
    Elijah Toumoua
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Chicago
    Description

    Prelude

    This dataset is a cleaned version of the Chicago Crime Dataset, which can be found here. All rights for the dataset go to the original owners. The purpose of this dataset is to display my skills in visualizations and creating dashboards. To be specific, I will attempt to create a dashboard that will allow users to see metrics for a specific crime within a given year using filters and metrics. Due to this, there will not be much of a focus on the analysis of the data, but there will be portions discussing the validity of the dataset, the steps I took to clean the data, and how I organized it. The cleaned datasets can be found below, the Query (which utilized BigQuery) can be found here and the Tableau dashboard can be found here.

    About the Dataset

    Important Facts

    The dataset comes directly from the City of Chicago's website under the page "City Data Catalog." The data is gathered directly from the Chicago Police's CLEAR (Citizen Law Enforcement Analysis and Reporting) and is updated daily to present the information accurately. This means that a crime on a specific date may be changed to better display the case. The dataset represents crimes starting all the way from 2001 to seven days prior to today's date.

    Reliability

    Using the ROCCC method, we can see that: * The data has high reliability: The data covers the entirety of Chicago from a little over 2 decades. It covers all the wards within Chicago and even gives the street names. While we may not have an idea for how big the sample size is, I do believe that the dataset has high reliability since it geographically covers the entirety of Chicago. * The data has high originality: The dataset was gained directly from the Chicago Police Dept. using their database, so we can say this dataset is original. * The data is somewhat comprehensive: While we do have important information such as the types of crimes committed and their geographic location, I do not think this gives us proper insights as to why these crimes take place. We can pinpoint the location of the crime, but we are limited by the information we have. How hot was the day of the crime? Did the crime take place in a neighborhood with low-income? I believe that these key factors prevent us from getting proper insights as to why these crimes take place, so I would say that this dataset is subpar with how comprehensive it is. * The data is current: The dataset is updated frequently to display crimes that took place seven days prior to today's date and may even update past crimes as more information comes to light. Due to the frequent updates, I do believe the data is current. * The data is cited: As mentioned prior, the data is collected directly from the polices CLEAR system, so we can say that the data is cited.

    Processing the Data

    Cleaning the Dataset

    The purpose of this step is to clean the dataset such that there are no outliers in the dashboard. To do this, we are going to do the following: * Check for any null values and determine whether we should remove them. * Update any values where there may be typos. * Check for outliers and determine if we should remove them.

    The following steps will be explained in the code segments below. (I used BigQuery for this so the coding will follow BigQuery's syntax) ```

    Examining the dataset

    There are over 7.5 million rows of data

    Putting a limit so it does not take a long time to run

    SELECT * FROM portfolioproject-350601.ChicagoCrime.Crime LIMIT 1000;

    Seeing which points are null

    There are 85,000 null points so we can exclude them as it's not a significant amount since it is only ~1.3% of the dataset

    Most of the null points are in the lat and long, which we will need later

    Because we don't have the full address, we can't estimate the lat and long in SQL so we will have to delete the rows with Null Data

    SELECT * FROM portfolioproject-350601.ChicagoCrime.Crime WHERE unique_key IS NULL OR case_number IS NULL OR date IS NULL OR primary_type IS NULL OR location_description IS NULL OR arrest IS NULL OR longitude IS NULL OR latitude IS NULL;

    Deleting all null rows

    DELETE FROM portfolioproject-350601.ChicagoCrime.Crime WHERE
    unique_key IS NULL OR case_number IS NULL OR date IS NULL OR primary_type IS NULL OR location_description IS NULL OR arrest IS NULL OR longitude IS NULL OR latitude IS NULL;

    Checking for any duplicates in the unique keys

    None to be found

    SELECT unique_key, COUNT(unique_key) FROM `portfolioproject-350601.ChicagoCrime....

  4. D

    Earth Observation Big Data Service Market Report | Global Forecast From 2025...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Earth Observation Big Data Service Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-earth-observation-big-data-service-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Earth, Global
    Description

    Earth Observation Big Data Service Market Outlook



    As of 2023, the global market size for Earth Observation Big Data Services is estimated at approximately $8.5 billion, and it is projected to reach $18.7 billion by 2032, growing at a CAGR of 9.1% during the forecast period. This robust growth can be attributed to several factors, including advancements in satellite technology, increasing demand for real-time data analysis, and the growing application of big data analytics across various industries.



    The primary growth factor driving the Earth Observation Big Data Service market is the significant advancements in satellite technologies. The development of high-resolution imaging satellites and the launch of numerous small satellites (CubeSats) have revolutionized the way data is captured and utilized from space. These advancements have enhanced the accuracy and frequency of Earth observation data, making it more beneficial for diverse applications such as climate monitoring, agriculture, and disaster management. Additionally, the decreasing cost of launching satellites has made it more accessible for various sectors to leverage Earth observation data, thereby broadening the market's scope.



    Another crucial growth factor is the increasing demand for real-time data analysis. In today's data-driven world, organizations across various sectors require timely and accurate information to make informed decisions. Earth observation data, when combined with big data analytics, provides insightful and actionable information that can be used for immediate decision-making. For example, in agriculture, real-time data on weather conditions, soil moisture, and crop health can significantly enhance yield and efficiency. Similarly, in disaster management, real-time data on natural calamities can drastically improve response times and mitigate damage. This demand for real-time data analysis is expected to propel the market further.



    The growing application of big data analytics in various industries is also a significant driver of the Earth Observation Big Data Service market. Industries such as agriculture, forestry, urban planning, and defense are increasingly leveraging big data analytics to optimize operations, reduce costs, and improve decision-making. In the defense sector, for instance, big data analytics is used for surveillance, reconnaissance, and intelligence gathering, which are vital for national security. The integration of advanced analytics with Earth observation data has opened new frontiers for innovation and efficiency, thus driving market growth.



    The rise of Commercial Satellite Imaging has played a pivotal role in the evolution of Earth Observation Big Data Services. By providing high-resolution images of the Earth's surface, commercial satellites have enabled a more detailed and comprehensive understanding of various geographical and environmental phenomena. This capability is not only beneficial for scientific research but also for practical applications such as urban planning, agriculture, and disaster management. The accessibility of commercial satellite data has democratized the use of satellite imagery, allowing a wider range of industries to leverage this technology for enhanced decision-making and strategic planning.



    Regional outlook for the Earth Observation Big Data Service market indicates significant growth across all major regions, with North America and Europe leading the charge due to their advanced technological infrastructure and substantial investments in satellite technology. Asia Pacific is expected to witness the highest growth rate, driven by rapid industrialization and increasing governmental focus on space programs. Latin America and the Middle East & Africa are also anticipated to show considerable growth, albeit at a slower pace compared to other regions.



    Service Type Analysis



    The Earth Observation Big Data Service market is segmented by service type into Data Acquisition, Data Processing, Data Analysis, and Data Visualization. Data Acquisition involves the collection of raw data from various satellite sources. This segment is critical as it forms the foundation upon which other services build. The advancements in satellite technology and the proliferation of CubeSats have made data acquisition more efficient and frequent, enhancing the overall quality and quantity of data collected.



    Data Processing is the next crucial segment, involving the transformatio

  5. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2018). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027. What is Big data? Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. Big data analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  6. Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Ireland, and UK), APAC (China, India, and Philippines), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-spending-market-in-healthcare-sector-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada
    Description

    Snapshot img

    Big Data Spending In Healthcare Sector Market Size 2025-2029

    The big data spending in healthcare sector market size is valued to increase by USD 7.78 billion, at a CAGR of 10.2% from 2024 to 2029. Need to improve business efficiency will drive the big data spending in healthcare sector market.

    Market Insights

    APAC dominated the market and accounted for a 31% growth during the 2025-2029.
    By Service - Services segment was valued at USD 5.9 billion in 2023
    By Type - Descriptive analytics segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 108.28 million 
    Market Future Opportunities 2024: USD 7783.80 million
    CAGR from 2024 to 2029 : 10.2%
    

    Market Summary

    The healthcare sector's adoption of big data analytics is a global trend that continues to gain momentum, driven by the need to improve business efficiency, enhance patient care, and ensure regulatory compliance. Big data in healthcare refers to the large and complex data sets generated from various sources, including Electronic Health Records, medical devices, and patient-generated data. This data holds immense potential for identifying patterns, predicting outcomes, and driving evidence-based decision-making. One real-world scenario illustrating this is supply chain optimization. Hospitals and healthcare providers can leverage big data analytics to optimize their inventory management, reduce wastage, and ensure timely availability of essential medical supplies.
    For instance, predictive analytics can help anticipate demand for specific medical equipment or supplies, enabling healthcare providers to maintain optimal stock levels and minimize the risk of stockouts or overstocking. However, the adoption of big data analytics in healthcare is not without challenges. Data privacy and security concerns related to patients' medical data are a significant concern, with potential risks ranging from data breaches to unauthorized access. Ensuring robust Data security measures and adhering to regulatory guidelines, such as the Health Insurance Portability and Accountability Act (HIPAA) in the US, is essential for maintaining trust and protecting sensitive patient information.
    In conclusion, the use of big data analytics in healthcare is a transformative trend that offers numerous benefits, from improved operational efficiency to enhanced patient care and regulatory compliance. However, it also presents challenges related to data privacy and security, which must be addressed to fully realize the potential of this technology.
    

    What will be the size of the Big Data Spending In Healthcare Sector Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    The market continues to evolve, with recent research indicating a significant increase in investments. This growth is driven by the need for improved patient care, regulatory compliance, and cost savings. One trend shaping the market is the adoption of advanced analytics techniques to gain insights from large datasets. For instance, predictive analytics is being used to identify potential health risks and improve patient outcomes.
    Additionally, data visualization software and data analytics platforms are essential tools for healthcare organizations to make data-driven decisions. Compliance is another critical area where big data is making a significant impact. With the increasing amount of patient data being generated, there is a growing need for data security and privacy. Data encryption methods and data anonymization techniques are being used to protect sensitive patient information. Budgeting is also a significant consideration for healthcare organizations investing in big data. Cost benefit analysis and statistical modeling are essential tools for evaluating the return on investment of big data initiatives.
    As healthcare organizations continue to invest in big data, they must balance the benefits against the costs to ensure they are making informed decisions. In conclusion, the market is experiencing significant growth, driven by the need for improved patient care, regulatory compliance, and cost savings. The adoption of advanced analytics techniques, data visualization software, and data analytics platforms is essential for healthcare organizations to gain insights from large datasets and make data-driven decisions. Additionally, data security and privacy are critical considerations, with data encryption methods and data anonymization techniques being used to protect sensitive patient information.
    Budgeting is also a significant consideration, with cost benefit analysis and statistical modeling essential tools for evaluating the return on investment of big data initiatives.
    

    Unpacking the Big Data Spending In Healthcare Sector Market Landscape

    In the dynamic healthcare sector, the adoption of big data technologies has become a st

  7. Big Data Analytics in Energy Sector - Analysis & Companies

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Big Data Analytics in Energy Sector - Analysis & Companies [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-in-energy-sector-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Big Data Analytics Market in Energy Sector Report is Segmented by Application (Grid Operations, Smart Metering, Asset and Workforce Management, Predictive Maintenance and APM, and More), Component (Software, and Services), Deployment Model (On-Premise, Cloud, and Hybrid), End-User (Power Utilities, Oil Exploration and Production, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  8. A data analysis framework for biomedical big data: Application on mesoderm...

    • plos.figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Ulfenborg; Alexander Karlsson; Maria Riveiro; Caroline Améen; Karolina Åkesson; Christian X. Andersson; Peter Sartipy; Jane Synnergren (2023). A data analysis framework for biomedical big data: Application on mesoderm differentiation of human pluripotent stem cells [Dataset]. http://doi.org/10.1371/journal.pone.0179613
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Benjamin Ulfenborg; Alexander Karlsson; Maria Riveiro; Caroline Améen; Karolina Åkesson; Christian X. Andersson; Peter Sartipy; Jane Synnergren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The development of high-throughput biomolecular technologies has resulted in generation of vast omics data at an unprecedented rate. This is transforming biomedical research into a big data discipline, where the main challenges relate to the analysis and interpretation of data into new biological knowledge. The aim of this study was to develop a framework for biomedical big data analytics, and apply it for analyzing transcriptomics time series data from early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. To this end, transcriptome profiling by microarray was performed on differentiating human pluripotent stem cells sampled at eleven consecutive days. The gene expression data was analyzed using the five-stage analysis framework proposed in this study, including data preparation, exploratory data analysis, confirmatory analysis, biological knowledge discovery, and visualization of the results. Clustering analysis revealed several distinct expression profiles during differentiation. Genes with an early transient response were strongly related to embryonic- and mesendoderm development, for example CER1 and NODAL. Pluripotency genes, such as NANOG and SOX2, exhibited substantial downregulation shortly after onset of differentiation. Rapid induction of genes related to metal ion response, cardiac tissue development, and muscle contraction were observed around day five and six. Several transcription factors were identified as potential regulators of these processes, e.g. POU1F1, TCF4 and TBP for muscle contraction genes. Pathway analysis revealed temporal activity of several signaling pathways, for example the inhibition of WNT signaling on day 2 and its reactivation on day 4. This study provides a comprehensive characterization of biological events and key regulators of the early differentiation of human pluripotent stem cells towards the mesoderm and cardiac lineages. The proposed analysis framework can be used to structure data analysis in future research, both in stem cell differentiation, and more generally, in biomedical big data analytics.

  9. Data Visualization Tools Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    pdf
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Visualization Tools Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-visualization-tools-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Data Visualization Tools Market Size 2025-2029

    The data visualization tools market size is forecast to increase by USD 7.95 billion at a CAGR of 11.2% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for business intelligence and AI-powered insights. Companies are recognizing the value of transforming complex data into easily digestible visual representations to inform strategic decision-making. However, this market faces challenges as data complexity and massive data volumes continue to escalate. Organizations must invest in advanced data visualization tools to effectively manage and analyze their data to gain a competitive edge. The ability to automate data visualization processes and integrate AI capabilities will be crucial for companies to overcome the challenges posed by data complexity and volume. By doing so, they can streamline their business operations, enhance data-driven insights, and ultimately drive growth in their respective industries.

    What will be the Size of the Data Visualization Tools Market during the forecast period?

    Request Free SampleIn today's data-driven business landscape, the market continues to evolve, integrating advanced capabilities to support various sectors in making informed decisions. Data storytelling and preparation are crucial elements, enabling organizations to effectively communicate complex data insights. Real-time data visualization ensures agility, while data security safeguards sensitive information. Data dashboards facilitate data exploration and discovery, offering data-driven finance, strategy, and customer experience. Big data visualization tackles complex datasets, enabling data-driven decision making and innovation. Data blending and filtering streamline data integration and analysis. Data visualization software supports data transformation, cleaning, and aggregation, enhancing data-driven operations and healthcare. On-premises and cloud-based solutions cater to diverse business needs. Data governance, ethics, and literacy are integral components, ensuring data-driven product development, government, and education adhere to best practices. Natural language processing, machine learning, and visual analytics further enrich data-driven insights, enabling interactive charts and data reporting. Data connectivity and data-driven sales fuel business intelligence and marketing, while data discovery and data wrangling simplify data exploration and preparation. The market's continuous dynamism underscores the importance of data culture, data-driven innovation, and data-driven HR, as organizations strive to leverage data to gain a competitive edge.

    How is this Data Visualization Tools Industry segmented?

    The data visualization tools industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudCustomer TypeLarge enterprisesSMEsComponentSoftwareServicesApplicationHuman resourcesFinanceOthersEnd-userBFSIIT and telecommunicationHealthcareRetailOthersGeographyNorth AmericaUSMexicoEuropeFranceGermanyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.The market has experienced notable expansion as businesses across diverse sectors acknowledge the significance of data analysis and representation to uncover valuable insights and inform strategic decisions. Data visualization plays a pivotal role in this domain. On-premises deployment, which involves implementing data visualization tools within an organization's physical infrastructure or dedicated data centers, is a popular choice. This approach offers organizations greater control over their data, ensuring data security, privacy, and adherence to data governance policies. It caters to industries dealing with sensitive data, subject to regulatory requirements, or having stringent security protocols that prohibit cloud-based solutions. Data storytelling, data preparation, data-driven product development, data-driven government, real-time data visualization, data security, data dashboards, data-driven finance, data-driven strategy, big data visualization, data-driven decision making, data blending, data filtering, data visualization software, data exploration, data-driven insights, data-driven customer experience, data mapping, data culture, data cleaning, data-driven operations, data aggregation, data transformation, data-driven healthcare, on-premises data visualization, data governance, data ethics, data discovery, natural language processing, data reporting, data visualization platforms, data-driven innovation, data wrangling, data-driven sales, data connectivit

  10. v

    Global Big Data Analytics in Banking Market Size By Analytics Type...

    • verifiedmarketresearch.com
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Big Data Analytics in Banking Market Size By Analytics Type (Descriptive, Predictive), By Deployment Mode (On-premises, Cloud-based), By Application (Customer Analytics, Risk & Compliance Analytics), By Geographic And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/global-big-data-analytics-in-banking-market-size-and-forecast/
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Big Data Analytics in Banking Market was valued at USD 41 Billion in 2024 and is projected to reach USD 67 Billion by 2032, growing at a CAGR of 27.8% during the forecast period 2026-2032.Big Data Analytics In Banking Market DriversThe Explosive Growth of Data Volume and Variety The digital age has ushered in an unprecedented explosion of data volume and variety within the banking sector. Financial institutions are now awash in massive datasets from diverse sources, including real-time transactions from mobile and online banking, customer interactions on social media, ATM usage logs, and data from IoT devices. A significant portion of this is unstructured data, such as customer feedback from call center recordings, emails, and online reviews. The sheer scale and complexity of this information overwhelm traditional data management systems. This necessitates the adoption of sophisticated Big Data Analytics platforms, which can ingest, process, and derive meaningful insights from both structured and unstructured data, enabling banks to transform raw information into a strategic asset.The Push for Hyper-Personalization and Enhanced Customer Experience: In a highly competitive market, banks are increasingly using Big Data Analytics to deliver hyper-personalized and better customer experiences. Today’s customers expect a seamless, tailored, and proactive banking journey that understands their individual needs. By analyzing transactional history, demographic information, and digital behavior, banks can create detailed customer profiles and segment their audience with precision. This allows for personalized product recommendations, targeted marketing campaigns, and customized financial advice. For example, a bank can use analytics to identify a customer's life-stage event, such as a home purchase, and proactively offer relevant mortgage products. This level of personalization is becoming a crucial competitive differentiator and is essential for improving customer loyalty and retention.The Critical Need for Advanced Risk Management and Fraud Detection: The growing sophistication of financial crime has made risk management, fraud detection, and regulatory compliance a primary driver for Big Data Analytics. Traditional, rule-based fraud detection systems are often too slow and rigid to combat modern threats. Big Data Analytics, powered by machine learning algorithms, allows banks to analyze transactional data in real time, identify unusual patterns, and detect fraudulent activities before they can cause significant loss. These tools can flag suspicious behaviors, such as a sudden change in spending location or a series of unusual transactions, with a high degree of accuracy. This also extends to compliance with anti-money laundering (AML) and know-your-customer (KYC) regulations, where big data helps automate and streamline the process of monitoring vast numbers of transactions to identify and report illicit activities.

  11. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petroc Taylor (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Petroc Taylor
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just 2 percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  12. G

    Unstructured Data Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Unstructured Data Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/unstructured-data-analytics-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Unstructured Data Analytics Market Outlook



    According to our latest research, the global unstructured data analytics market size reached USD 10.4 billion in 2024, reflecting robust demand across industries seeking actionable insights from vast volumes of unstructured data. The market is expected to grow at a remarkable CAGR of 22.7% from 2025 to 2033, reaching a projected size of USD 80.2 billion by 2033. This exceptional growth is primarily driven by the exponential increase in data generation, the proliferation of advanced analytics and artificial intelligence technologies, and the urgent need for organizations to derive value from data sources such as emails, social media, documents, and multimedia files.




    One of the most significant growth factors propelling the unstructured data analytics market is the sheer volume of unstructured data generated daily from diverse digital channels. As enterprises continue their digital transformation journeys, they accumulate vast amounts of data that do not fit neatly into traditional databases. This includes customer interactions on social media, multimedia content, sensor data, and more. The inability to harness this data can lead to missed opportunities and competitive disadvantages. As a result, organizations across sectors are investing heavily in unstructured data analytics solutions to unlock hidden patterns, enhance decision-making, and drive innovation. The rapid adoption of Internet of Things (IoT) devices and the expansion of digital business models further amplify the need for advanced analytics platforms capable of handling complex, unstructured information.




    Another critical driver for market expansion is the integration of artificial intelligence (AI) and machine learning (ML) technologies within unstructured data analytics platforms. These technologies enable organizations to process, analyze, and interpret vast datasets with unprecedented speed and accuracy. Natural language processing (NLP), image recognition, and sentiment analysis are just a few examples of AI-driven capabilities that are transforming how businesses extract insights from unstructured data. The growing sophistication of these tools allows companies to automate labor-intensive processes, reduce operational costs, and gain real-time visibility into market trends and customer sentiments. As AI and ML continue to evolve, their integration into unstructured data analytics solutions is expected to further accelerate market growth and adoption across all major industries.




    The increasing emphasis on regulatory compliance and risk management is also fueling the adoption of unstructured data analytics. Regulatory bodies worldwide are enforcing stricter data governance and privacy regulations, compelling organizations to monitor and analyze all forms of data, including unstructured content. Failure to comply with these regulations can result in significant financial penalties and reputational damage. Advanced analytics solutions empower businesses to proactively identify compliance risks, detect fraudulent activities, and ensure adherence to industry standards. This regulatory landscape, combined with the strategic benefits of data-driven insights, is prompting organizations in sectors such as BFSI, healthcare, and government to prioritize investments in unstructured data analytics.




    From a regional perspective, North America currently dominates the unstructured data analytics market, accounting for the largest revenue share in 2024 due to the high concentration of technology-driven enterprises and early adoption of advanced analytics solutions. However, the Asia Pacific region is poised for the fastest growth during the forecast period, driven by rapid digitalization, expanding IT infrastructure, and increasing investments in AI and big data analytics. Europe also represents a significant market, supported by strong regulatory frameworks and a focus on data-driven business strategies. Meanwhile, Latin America and the Middle East & Africa are witnessing gradual adoption, with growing awareness of the strategic value of unstructured data analytics in improving operational efficiency and customer engagement.



  13. c

    Big Data Analytics in Healthcare Market Will Grow at a CAGR of 17.20% from...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2024). Big Data Analytics in Healthcare Market Will Grow at a CAGR of 17.20% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/big-data-analytics-in-healthcare-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 1, 2024
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global big data analytics in healthcare market size is USD 30251.2 million in 2024 and will expand at a compound annual growth rate (CAGR) of 17.20% from 2024 to 2031.

    North America held the major market of more than 40% of the global revenue with a market size of USD 12100.48 million in 2024 and will grow at a compound annual growth rate (CAGR) of 15.4% from 2024 to 2031.
    Europe accounted for a share of over 30% of the global market size of USD 9075.36 million.
    Asia Pacific held the market of around 23% of the global revenue with a market size of USD 6957.78 million in 2024 and will grow at a compound annual growth rate (CAGR) of 19.2% from 2024 to 2031.
    Latin America's market has more than 5% of the global revenue, with a market size of USD 16.6 million in 2024, and will grow at a compound annual growth rate (CAGR) of 12.4% from 2024 to 2031.
    Middle East and Africa held the major market of around 2% of the global revenue with a market size of USD 605.02 million in 2024 and will grow at a compound annual growth rate (CAGR) of 16.9% from 2024 to 2031.
    The hospitals & clinics category held the highest big data analytics in healthcare market revenue share in 2024.
    

    Market Dynamics of Big Data Analytics in Healthcare Market

    Key Drivers for Big Data Analytics in Healthcare Market

    Growing Use of EMR and EHR to Increase the Demand Globally:

    One aspect that has contributed to the widespread implementation of EHR is government backing for their adoption, given their advantages over traditional paper-based health records. Adoption of EHRs benefits ambulatory practices and patients alike because they enhance patient care, facilitate faster access to records, and improve care coordination; increase practice efficiency and reduce costs through reduced paperwork; foster patient participation and transparency; and improve diagnostic and patient outcomes through accurate prescribing. For instance, To safeguard and legitimize digital healthcare data, the Indian government introduced the Digital Information Security in Healthcare Act (DISHA) in March 2019. The purpose of DISHA is to control the creation, gathering, storing, processing, sharing, and ownership of individually identifiable health information and patient health data. (Source: https://www.znetlive.com/blog/digital-information-security-healthcare-act-disha/).

    Growing Need to Lower Medical Expenses to Propel Market Growth:

    These days, rising operating costs are a problem for many hospitals and health organizations. Medical practices can operate more efficiently thanks to healthcare analytics. Reduced transcribing expenses, less time spent on paperwork, better billing documentation, fewer or no chart pulls, and storage, and better patient outcomes and care can all help cut down on operating expenses. It is said that putting this into practice saves a lot of money. Moreover, hospitals and medical practitioners can reduce unnecessary and excessive spending by utilizing analytical tools. Research has also shown that medical errors can result in billion-dollar expenses, including higher medical malpractice lawsuit costs and additional expenses for patients who require therapy to recover from errors in medicine. In addition, The application of predictive analytics can improve patient care and lower the likelihood of disease in the future. Thus, it is anticipated that the growing demand to lower operating costs in the healthcare sector will contribute to the expansion of big data analytics in healthcare market.

    Key Restraint Factor for the Big Data Analytics in Healthcare Market

    Rising Concerns About Safety Could Prevent Market Expansion:

    The technology creates serious questions about data security and privacy, as well as about issues like fake data creation, the need for real-time protection, and its desire. Some of the current areas that require attention are the remote warehouse, improper identity management, inadequate acquisitions in the information security and systems, human error, networked appliances, and Internet of Things applications. Attempting to get around these problems is extremely difficult for associations. It is anticipated that the growing frequency of data loss incidents and cyberattacks on businesses that store customer data would hinder the industry's ability to grow. Furthermore, it is anticipated that upholding data privacy regulations such as the EU General...

  14. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo

  15. Revenue of leading data center markets worldwide 2018-2029

    • statista.com
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petroc Taylor (2025). Revenue of leading data center markets worldwide 2018-2029 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Petroc Taylor
    Description

    The revenue is forecast to experience significant growth in all regions in 2029. From the selected regions, the ranking by revenue in the data center market is forecast to be led by the United States with 212.06 billion U.S. dollars. In contrast, the ranking is trailed by the United Kingdom with 23.76 billion U.S. dollars, recording a difference of 188.3 billion U.S. dollars to the United States. Find further statistics on other topics such as a comparison of the revenue in the world and a comparison of the revenue in the United States.The Statista Market Insights cover a broad range of additional markets.

  16. Multi-Dimensional Data Viewer (MDV) user manual for data exploration:...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    pdf, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Kiourlappou; Maria Kiourlappou; Martin Sergeant; Martin Sergeant; Joshua S. Titlow; Joshua S. Titlow; Jeffrey Y. Lee; Jeffrey Y. Lee; Darragh Ennis; Stephen Taylor; Stephen Taylor; Ilan Davis; Ilan Davis; Darragh Ennis (2024). Multi-Dimensional Data Viewer (MDV) user manual for data exploration: "Systematic analysis of YFP gene traps reveals common discordance between mRNA and protein across the nervous system" [Dataset]. http://doi.org/10.5281/zenodo.7738944
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Maria Kiourlappou; Maria Kiourlappou; Martin Sergeant; Martin Sergeant; Joshua S. Titlow; Joshua S. Titlow; Jeffrey Y. Lee; Jeffrey Y. Lee; Darragh Ennis; Stephen Taylor; Stephen Taylor; Ilan Davis; Ilan Davis; Darragh Ennis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The explosion in the volume of biological imaging data challenges the available technologies for data interrogation and its intersection with related published bioinformatics data sets. Moreover, intersection of highly rich and complex datasets from different sources provided as flat csv files requires advanced informatics skills, which is time consuming and not accessible to all. Here, we provide a “user manual” to our new paradigm for systematically filtering and analysing a dataset with more than 1300 microscopy data figures using Multi-Dimensional Viewer (MDV: https://mdv.molbiol.ox.ac.uk), a solution for interactive multimodal data visualisation and exploration. The primary data we use are derived from our published systematic analysis of 200 YFP gene traps reveals common discordance between mRNA and protein across the nervous system (https://doi.org/10.1083/jcb.202205129). This manual provides the raw image data together with the expert annotations of the mRNA and protein distribution as well as associated bioinformatics data. We provide an explanation, with specific examples, of how to use MDV to make the multiple data types interoperable and explore them together. We also provide the open-source python code (github link) used to annotate the figures, which could be adapted to any other kind of data annotation task.

  17. f

    Data from: spectrum_utils: A Python Package for Mass Spectrometry Data...

    • acs.figshare.com
    text/x-python
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wout Bittremieux (2023). spectrum_utils: A Python Package for Mass Spectrometry Data Processing and Visualization [Dataset]. http://doi.org/10.1021/acs.analchem.9b04884.s001
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Wout Bittremieux
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Given the wide diversity in applications of biological mass spectrometry, custom data analyses are often needed to fully interpret the results of an experiment. Such bioinformatics scripts necessarily include similar basic functionality to read mass spectral data from standard file formats, process it, and visualize it. Rather than having to reimplement this functionality, to facilitate this task, spectrum_utils is a Python package for mass spectrometry data processing and visualization. Its high-level functionality enables developers to quickly prototype ideas for computational mass spectrometry projects in only a few lines of code. Notably, the data processing functionality is highly optimized for computational efficiency to be able to deal with the large volumes of data that are generated during mass spectrometry experiments. The visualization functionality makes it possible to easily produce publication-quality figures as well as interactive spectrum plots for inclusion on web pages. spectrum_utils is available for Python 3.6+, includes extensive online documentation and examples, and can be easily installed using conda. It is freely available as open source under the Apache 2.0 license at https://github.com/bittremieux/spectrum_utils.

  18. G

    Market Data and Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Market Data and Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/market-data-and-analytics-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Market Data and Analytics Market Outlook



    According to our latest research, the market size of the global Market Data and Analytics Market reached USD 41.7 billion in 2024, underpinned by robust digital transformation across industries and the escalating need for actionable insights. The market is projected to expand at a CAGR of 12.2% during the forecast period, reaching an estimated value of USD 114.7 billion by 2033. This growth trajectory is primarily driven by the proliferation of big data, the adoption of advanced analytics, and the integration of artificial intelligence and machine learning technologies into enterprise decision-making processes.




    A significant growth factor propelling the Market Data and Analytics Market is the exponential increase in data generation from diverse sources such as IoT devices, social media platforms, e-commerce transactions, and enterprise applications. Organizations are increasingly investing in sophisticated analytics tools to harness this data, uncover hidden patterns, and drive strategic business outcomes. The adoption of cloud-based analytics platforms has further democratized access to data insights, enabling even small and medium-sized enterprises to leverage advanced analytics without the need for heavy upfront infrastructure investments. Furthermore, real-time analytics and predictive modeling are becoming integral in sectors such as financial services, healthcare, and retail, where timely decision-making is critical to maintaining competitive advantage.




    Another pivotal driver is the growing regulatory emphasis on data governance, security, and compliance, particularly in highly regulated industries like BFSI and healthcare. The proliferation of data privacy regulations such as GDPR, CCPA, and sector-specific mandates has compelled organizations to implement robust data management and analytics frameworks. This regulatory environment is fostering the adoption of market data and analytics solutions that offer end-to-end data lineage, auditability, and secure data processing capabilities. Moreover, the integration of AI-powered analytics is enabling organizations to automate compliance monitoring and reporting, reducing operational risks and ensuring adherence to regulatory requirements.




    The rise of digital transformation initiatives across both public and private sectors is further accelerating the adoption of market data and analytics solutions. Enterprises are leveraging analytics not only for operational efficiency but also for enhancing customer experiences, personalizing offerings, and identifying new revenue streams. In manufacturing, for example, predictive analytics is being used to optimize supply chains and reduce downtime, while in retail, customer analytics is driving hyper-personalized marketing campaigns. The convergence of analytics with emerging technologies such as blockchain, edge computing, and IoT is opening new avenues for innovation, making data-driven decision-making a cornerstone of modern business strategy.




    Regionally, North America continues to dominate the global Market Data and Analytics Market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The strong presence of technology giants, a mature digital infrastructure, and early adoption of advanced analytics have cemented North America's leadership. However, Asia Pacific is emerging as the fastest-growing region, fueled by rapid digitalization, expanding internet penetration, and increasing investments in smart city and e-government initiatives. Latin America and the Middle East & Africa are also witnessing growing adoption, driven by sectoral digital transformation and regulatory modernization. The regional dynamics underscore the global nature of the market, with localized drivers shaping adoption trends and growth trajectories.





    Component Analysis



    The Market Data and Analytics Market is segmented by component into software, hardware, and services, each playing a distinct role in facilitating robust analytics ecosystems.

  19. Example of the impact of including/excluding UPDRS data on the accuracy of...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivo D. Dinov; Ben Heavner; Ming Tang; Gustavo Glusman; Kyle Chard; Mike Darcy; Ravi Madduri; Judy Pa; Cathie Spino; Carl Kesselman; Ian Foster; Eric W. Deutsch; Nathan D. Price; John D. Van Horn; Joseph Ames; Kristi Clark; Leroy Hood; Benjamin M. Hampstead; William Dauer; Arthur W. Toga (2023). Example of the impact of including/excluding UPDRS data on the accuracy of the AdaBoost classification. [Dataset]. http://doi.org/10.1371/journal.pone.0157077.t010
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ivo D. Dinov; Ben Heavner; Ming Tang; Gustavo Glusman; Kyle Chard; Mike Darcy; Ravi Madduri; Judy Pa; Cathie Spino; Carl Kesselman; Ian Foster; Eric W. Deutsch; Nathan D. Price; John D. Van Horn; Joseph Ames; Kristi Clark; Leroy Hood; Benjamin M. Hampstead; William Dauer; Arthur W. Toga
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of the impact of including/excluding UPDRS data on the accuracy of the AdaBoost classification.

  20. Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jan 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 11, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Data Analytics Market Size 2025-2029

    The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.

    The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.

    What will be the Size of the Data Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data. Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data. Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.

    How is this Data Analytics Industry segmented?

    The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Component Insights

    The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offerings, are driving innovatio

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
Organization logo

Big data and business analytics revenue worldwide 2015-2022

Explore at:
38 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 17, 2021
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

Search
Clear search
Close search
Google apps
Main menu