Over 42 percent of Argentine households located in large metropolitan areas were found to live under the poverty line in the first half of 2023, 12.9 percentage points more in comparison to the same period a year earlier. When compared to the first semester of 2018, the share of urban households living under the poverty line in the South American country rose over 20 percentage points. According to the latest data available, 2.54 percent of the Argentinian population is living on less than 3.65 U.S. dollars per day.
This table provides 2022 data on the estimated average household size by at-risk-of-poverty. The information is disaggregated territorially at the level of large regions of the Canary Islands.
This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
As of 2019, the population mostly affected by poverty in Nigeria was those living in large household in rural areas. Households in rural areas were generally much more impacted than those living in urban areas. For instance, almost 80 percent of people living in households with at least 20 individuals in rural areas lived below the poverty line. According to national standards, an individual with less than 137.4 thousand Nigerian Naira (roughly 361 U.S. dollars) per year is considered poor. Nationwide, 40.1 percent of population lived in poverty.
In 2023, the poverty line for a two-person family in Israel, was about 6,650 Israeli shekels, some 1,800 U.S. dollars, based on the monthly income. The poverty line increased with family size, reaching 18,600 Israeli shekels, about 5,050 U.S. dollars, for a big family of nin people.
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
This map shows demographic and income data in Detroit. Assuming an assignment where the poverty fighting charity I work for would like to alleviate suffering among impoverished children in Detroit. Detroit is a Michigan city that always ranks among America's poorest urban centers. Orange circles have below average median household income, the darker shades indicate households with a very low income-close to poverty level. The size of the circles: larger circles indicate a greater number of children in the area.What stands out is the obvioud pattern of low-income households in the city center combined with areas of high child population. This pattern helps answer where in Detroit our charity will focus its resources to help children living in poverty-in places shown on the map where there is a cluster of several large dark Orange circles like Dearborn and Pontiac (for example). The charity may and will offer free after school care and/Or but not limited to breakfast programs.
http://www.gobiernodecanarias.org/istac/aviso_legal.htmlhttp://www.gobiernodecanarias.org/istac/aviso_legal.html
This table provides 2018 data on the estimated average household size by at-risk-of-poverty. The information is disaggregated territorially at the level of large regions of the Canary Islands.
In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The categories for relationship to householder were revised in 2019. For more information see Revisions to the Relationship to Household item..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains Year and State wise Poverty Rate-Number of Persons and Percentage
Lakdawala Methodology: An older method to measure poverty in India based on minimum calorie intake (2,400 rural / 2,100 urban). It used a 30-day recall for all expenses but did not include health and education costs.
Tendulkar Methodology:A revised method that considers actual spending on food, health, education, etc. It uses a mixed recall period and provides a more realistic estimate of poverty.
Mixed Recall Period: Combines two recall periods: 30 days for regular items and 365 days for infrequent ones. This helps reduce errors and gives a better picture of total household spending.
30-Day Recall Period: Collects data based on what households spent in the last 30 days for all items. It may miss big or occasional expenses and can underestimate actual consumption.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer represents USDA Food Access Research Atlas data at the census tract geography. Low Income is defined as tracts with a poverty rate of 20% or higher, or tracts with median family income less than 80% of median family income of the state or metropolitan area. Low Access is defined as tracts where a significant number or share of residents is more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket.http://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas.aspxFood accessLimited access to supermarkets, supercenters, grocery stores, or other sources of healthy and affordable food may make it harder for some Americans to eat a healthy diet. There are many ways to measure food store access for individuals and for neighborhoods, and many ways to define which areas are food deserts—neighborhoods that lack healthy food sources. Most measures and definitions take into account at least some of the following indicators of access:Accessibility to sources of healthy food, as measured by distance to a store or by the number of stores in an area.Individual-level resources that may affect accessibility, such as family income or vehicle availability.Neighborhood-level indicators of resources, such as the average income of the neighborhood and the availability of public transportation.In the Food Access Research Atlas, several indicators are available to measure food access along these dimensions. For example, users can choose alternative distance markers to measure low access in a neighborhood, such as the number and share of people more than half a mile to a supermarket or 1 mile to a supermarket. Users can also view other census-tract-level characteristics that provide context on food access in neighborhoods, such as whether the tract has a high percentage of households far from supermarkets and without vehicles, individuals with low income, or people residing in group quarters.Low-income neighborhoodsThe criteria for identifying a census tract as low income are from the Department of Treasury’s New Markets Tax Credit (NMTC) program. This program defines a low-income census tract as any tract where:The tract’s poverty rate is 20 percent or greater; orThe tract’s median family income is less than or equal to 80 percent of the State-wide median family income; orThe tract is in a metropolitan area and has a median family income less than or equal to 80 percent of the metropolitan area's median family income.Low-access census tractsIn the Food Access Research Atlas, low access to healthy food is defined as being far from a supermarket, supercenter, or large grocery store ("supermarket" for short). A census tract is considered to have low access if a significant number or share of individuals in the tract is far from a supermarket.In the original Food Desert Locator, low access was measured as living far from a supermarket, where 1 mile was used in urban areas and 10 miles was used in rural areas to demarcate those who are far from a supermarket. In urban areas, about 70 percent of the population was within 1 mile of a supermarket, while in rural areas over 90 percent of the population was within 10 miles (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Updating the original 1- and 10-mile low-access measure shows that an estimated 18.3 million people in these low-income and low-access census tracts were far from a supermarket in 2010.Three additional measures of food access based on distance to a supermarket are provided in the Atlas:One additional measure applies a 0.5-mile demarcation in urban areas and a 10-mile distance in rural areas. Using this measure, an estimated 52.5 million people, or 17 percent of the U.S. population, have low access to a supermarket;A second measure applies a 1.0-mile demarcation in urban areas and a 20-mile distance in rural areas. Under this measure, an estimated 16.5 million people, or 5.3 percent of the U.S. population, have low access to a supermarket; andA slightly more complex measure incorporates vehicle access directly into the measure, delineating low-income tracts in which a significant number of households are located far from a supermarket and do not have access to a vehicle. This measure also includes census tracts with populations that are so remote, that, even with a vehicle, driving to a supermarket may be considered a burden due to the great distance. Using this measure, an estimated 2.1 million households, or 1.8 percent of all households, in low-income census tracts are far from a supermarket and do not have a vehicle. An additional 0.3 million people are more than 20 miles from a supermarket.For each of the first three measures that are based solely on distance, a tract is designated as low access if the aggregate number of people in the census tract with low access is at least 500 or the percentage of people in the census tract with low access is at least 33 percent. For the final measure using vehicle availability, a tract is designated as having low vehicle access if at least one of the following is true:at least 100 households are more than ½ mile from the nearest supermarket and have no access to a vehicle; orat least 500 people or 33 percent of the population live more than 20 miles from the nearest supermarket, regardless of vehicle access.Methods used to assess distance to the nearest supermarket are the same for each of these measures. First, the entire country is divided into ½-km square grids, and data on the population are aerially allocated to these grids (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Then, distance to the nearest supermarket is measured for each grid cell by calculating the distance between the geographic center of the ½-km square grid that contains estimates of the population (number of people and other subgroup characteristics) and the center of the grid with the nearest supermarket.Once the distance to the nearest supermarket is calculated for each grid cell, the estimated number of people or housing units that are more than 1 mile from a supermarket in urban tracts, or 10 miles in rural census tracts, is aggregated at the census-tract level (and similarly for the alternative distance markers). A census tract is considered rural if the population-weighted centroid of that tract is located in an area with a population of less than 2,500; all other tracts are considered urban tracts.Food desertsThe Food Access Research Atlas maps census tracts that are both low income (li) and low access (la), as measured by the different distance demarcations. This tool provides researchers and other users multiple ways to understand the characteristics that can contribute to food deserts, including income level, distance to supermarkets, and vehicle access.Additional tract-level indicators of accessVehicle availabilityA tract is identified as having low vehicle availability if more than 100 households in the tract report having no vehicle available and are more than 0.5 miles from the nearest supermarket. This corresponds closely to the 80th percentile of the distribution of the number of housing units in a census tract without vehicles at least 0.5 miles from a supermarket (the 80th percentile value was 106 housing units). This means that about 20 percent of all census tracts had more than 100 housing units that were 0.5 miles from a supermarket and without a vehicle. This indicator was applied to both urban and rural census tracts.Overall, 8.8 percent of all housing units in the United States do not have a vehicle, and 4.2 percent of all housing units are at least 0.5 mile from a store and without a vehicle. Vehicle availability is defined in the American Community Survey as the number of passenger cars, vans, or trucks with a capacity of 1-ton or less kept at the home and available for use by household members. The number of available vehicles includes those vehicles leased or rented for at least 1 month, as well as company, police, or government vehicles that are kept at home and available for non-business use.Whether a vehicle is available to a household for private use is an important additional indicator of access to healthy and affordable food. For households living far from a supermarket or large grocery store, access to a private vehicle may make accessing these retailers easier than relying on public or alternative means of transportation.Group quarters populationUsers may be interested in highlighting tracts with large shares of people living in group quarters. Group quarters are residential arrangements where an entity or organization owns and provides housing (and often services) for individuals residing in these buildings. This includes college dormitories, military quarters, correctional facilities, homeless shelters, residential treatment centers, and assisted living or skilled nursing facilities. These living arrangements frequently provide dining and food retail solely for their residents. While individuals living in these areas may appear to be far from a supermarket or grocery store, they may not truly experience difficulty accessing healthy and affordable food. Tracts in which 67 percent of individuals or more live in group quarters are highlighted.General tract characteristicsPopulation, tract totalGeographic level: census tractYear of data: 2010Definition: Total number of individuals residing in a tract.Data sources: Data are from the 2012 report, Access to Affordable and Nutritious Food: Updated Estimates of Distances to Supermarkets Using 2010 Data. Population data are reported at the block level from the 2010 Census of Population and Housing. These data were aerially allocated down to ½-kilometer-square grids across the United States.Low-income tractGeographic level: census tractYear of data: 2010Definition: A tract with either a poverty rate of 20
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The US Family Budget Dataset provides insights into the cost of living in different US counties based on the Family Budget Calculator by the Economic Policy Institute (EPI).
This dataset offers community-specific estimates for ten family types, including one or two adults with zero to four children, in all 1877 counties and metro areas across the United States.
If you find this dataset valuable, don't forget to hit the upvote button! 😊💝
Employment-to-Population Ratio for USA
Productivity and Hourly Compensation
USA Unemployment Rates by Demographics & Race
Photo by Alev Takil on Unsplash
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The governance of multidimensional relative poverty is a key challenge in rural poverty alleviation in the new era, as well as an important practice of the implementation of the United Nations Sustainable Development Goals in China. Based on provincial fiscal and financial data as well as data from the China Family Panel Studies (CFPS), this article employs multilevel linear regression and structural equation modeling to empirically examine the impact and mechanisms of fiscal investment in agriculture on multidimensional relative poverty among farmers. The research results indicate that fiscal investment in agriculture can effectively alleviate multidimensional relative poverty among rural households, and this conclusion still holds after the robustness and endogeneity tests of traditional measurement and Double Machine Learning. However, differences in household characteristics affect the performance of fiscal poverty alleviation. Households in the central and western regions, with larger family sizes, younger members, and lower levels of education, exhibit higher policy responsiveness. In terms of mechanisms, digital inclusive finance and social capital serve as important channels for fiscal multidimensional poverty reduction. However, attention should be paid to the positive lag effect of digital inclusive finance and the risk of “elite capture” in households with low levels of social capital. Accordingly, the article recommends that fiscal spending should be increased and made more efficient, with precise policy measures, strengthened institutional coordination, and efforts to cultivate optimal levels of social capital. While the article is limited by data availability to allow for a more in-depth and complex discussion, it still provides insights for fiscal strategies aimed at building high-quality shared prosperity.
In order to develop an effective poverty reduction policies and programs, Iraqi policy makers need to know how large the poverty problem is, what kind of people are poor, and what are the causes and consequences of poverty. Until recently, they had neither the data nor an official poverty line. (The last national income and expenditure survey was in 1988.) In response to this situation, the Iraqi Ministry of Planning and Development Cooperation established the Household Survey and Policies for Poverty Reduction Project in 2006, with financial and technical support of the World Bank. The project has been led by the Iraqi Poverty Reduction Strategy High Committee, a group which includes representatives from Parliament, the prime minister’s office, the Kurdistan Regional Government, and the ministries of Planning and Development Cooperation, Finance, Trade, Labor and Social Affairs, Education, Health, Women’s Affairs, and Baghdad University. The Project has consisted of three components: - Collection of data which can provide a measurable indicator of welfare, i.e.the Iraq Household Socio Economic Survey (IHSES). - Establishment of an official poverty line (i.e. a cut off point below which people are considered poor) and analysis of poverty (how large the poverty problem is, what kind of people are poor and what are the causes and consequences of poverty). - Development of a Poverty Reduction Strategy, based on a solid understanding of poverty in the Republic of Iraq.
National coverage Domains: Urban/rural/metropolitan; governorates
Sample survey data [ssd]
Total sample size and stratification
The total effective sample size of the IHSES 2007 is 17,822 households. The survey was nominally designed to visit 18,144 households - 324 in each of 56 major strata. The strata are the rural, urban and metropolitan sections of each of the Republic of Iraq's 18 governorates, with the exception of Baghdad, which has three metropolitan strata. The IHSES 2007 and the MICS 2006 survey intended to visit the same nominal sample. Variable q0040 indicates whether this was indeed the case.
Sampling strategy and sampling stages
The sample was selected in two stages, with groups of majals (Census Enumeration Areas) as Primary Sampling Units (PSUs) and households as Secondary Sampling Units. In the first stage, 54 PSUs were selected with probability proportional to size (pps) within each stratum, using the number of households recorded by the 1997 Census as a measure of size. In the second stage, six households were selected by systematic equal probability sampling (seps) within each PSU. To these effects, a cartographic updating and household listing operation was conducted in 2006 in all 3,024 PSUs, without resorting to the segmentation of any large PSUs. The total sample is thus nominally composed of 6 households in each of 3,024 PSUs.
Trios, teams and survey waves
The PSUs selected in each governorate (270 in Baghdad and 162 in each of the other governorates) were sorted into groups of three neighboring PSUs called trios -- 90 trios in Baghdad and 54 per governorate elsewhere. The three PSUs in each trio do not necessarily belong to the same stratum. The 12 months of the data collection period were divided into 18 periods of 20 or 21 days called survey waves. Fieldworkers were organized into teams of three interviewers, each team being responsible for interviewing one trio during a survey wave. The survey used 56 teams in total - 5 in Baghdad and 3 per governorate elsewhere. The 18 trios assigned to each team were allocated into survey waves at random. The 'time use' module was administered to two of the six households selected in each PSU: nominally the second and fifth households selected by the seps procedure in the PSU.
(For a formatted version of this field, see "IHSES sampling design and sampling weights.pdf" in "External Resources".) (For a map of Iraq's governorates and districts, see "Iraq governorates and districts.pdf" in "External Resources".)
The design did not consider the replacement of any of the randomly selected units (PSUs or households.) However, certain emergency procedures were defined to deal with security situations: If a survey team was unable to visit a trio of PSUs in the originally allocated wave, that trio was to be swapped with the trio from a randomly selected future wave that was secure at the time. If none of the still unvisited trios was secure, one of the secure trios already visited was randomly selected instead, and the team visited in each of its PSUs a new seps sample of six households - different from those interviewed when the trio was visited the first time.
This explains why the survey datasets only contain data from 2,876 of the 3,024 originally selected PSUs, whereas 55 of the PSUs contain more that the six households nominally dictated by the design.
The wave number in the survey datasets is always the nominal wave number, corresponding to the random allocation considered by the design. The effective interview dates can be found in questions 35 to 39 of the survey questionnaires.
Practice deviated from the designed procedures in two cases: In one of the governorates (Suleimaniya,) the survey was fielded for an additional two waves (waves 19 and 20,) in order to visit an extra 18 PSUs, selected from certain metropolitan areas that were not included in the original sample frame. These areas are to be analyzed jointly with the rest of metropolitan Suleimaniya, but from a sampling standpoint they constitute a de facto fourth stratum in the governorate. In another governorate (Kirkuk,) local managers used their judgment rather than the established procedures to select 12 replacement PSUs. To identify the 30 PSUs resulting from these deviations in the survey datasets, their original 'cluster numbers' (ranging from 0001 to 3024) were increased by 5000.
Face-to-face [f2f]
The questionnaire was designed by COSIT in continuous consultation with the WB consultants. It is composed of 18 sections covering household characteristics, government ration, housing, education, health, recreation facilities, employment, expenditure and income, transfers and risks along with the diary and time use. A pre-test of the questionnaire was conducted at an early stage of the project in a small number of households with different characteristics in some governorates. To facilitate its administration, the questionnaire was divided into 5 physical booklets called "forms". Form 1 gathers socio economic information on household members and housing; Form 2 is to record non food expenditures, Form 3 is for employment, transfers and others; Form 4 is the diary used to record household's food purchases during 10 days and finally Form 5 with the time use sheet administered to one third of the households in the sample. All forms where produced in three languages: Arabic, Kurdish and English (all available in "External Resources").
Data editing took place at a number of stages throughout the processing, including: 1. Office editing by local supervisors. 2. Based on the validation rules incorporated in the data entry program (CSPro), rejection reports were produced, based on which data are corrected. 3. Structural checking of SPSS data files. 4. Automatic fixing programme at the analysis phase. Detailed documentation of the editing of data can be found in the "Data processing guidelines" document provided as an external resource.
The estimation of standard errors must account for the design features explained in the "Sampling" field. (See also "IHSES sampling design and sample weights" in "External Resources.")
The following variables, included in all datasets, are needed for the estimation of standard errors:
xweight : sampling weight
xstrat: sampling stratum
xcluster: primary sampling unit
Warning: Variable 'xbeea', also present in all datasets, identifies rural, urban and metropolitan environments for tabulation purposes; it is sometimes wrongly referred to as 'stratum', but it should not be used for the estimation of sampling errors. The variable that needs to be used for these purposes is 'xstrat', which identifies the 57 sampling strata, defined as the rural, urban and metropolitan sectors of each of each of the 18 governorates, with the exception of Baghdad (which has three metropolitan sectors,) and Suleimaniya (which has two.)
This map app shows demographic and income data in Detroit. Assuming an assignment where the poverty fighting charity I work for would like to alleviate suffering among impoverished children in Detroit. Detroit is a Michigan city that always ranks among America's poorest urban centers. Orange circles have below average median household income, the darker shades indicate households with a very low income-close to poverty level. The size of the circles: larger circles indicate a greater number of children in the area.What stands out is the obvioud pattern of low-income households in the city center combined with areas of high child population. This pattern helps answer where in Detroit our charity will focus its resources to help children living in poverty-in places shown on the map where there is a cluster of several large dark Orange circles like Dearborn and Pontiac (for example). The charity may and will offer free after school care and/Or but not limited to breakfast programs.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2022 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Over 42 percent of Argentine households located in large metropolitan areas were found to live under the poverty line in the first half of 2023, 12.9 percentage points more in comparison to the same period a year earlier. When compared to the first semester of 2018, the share of urban households living under the poverty line in the South American country rose over 20 percentage points. According to the latest data available, 2.54 percent of the Argentinian population is living on less than 3.65 U.S. dollars per day.