This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately **** million people lived in Auckland, making it the biggest city in New Zealand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand NZ: Population in Largest City data was reported at 1,377,309.000 Person in 2017. This records an increase from the previous number of 1,360,422.000 Person for 2016. New Zealand NZ: Population in Largest City data is updated yearly, averaging 851,045.500 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,377,309.000 Person in 2017 and a record low of 440,164.000 Person in 1960. New Zealand NZ: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s New Zealand – Table NZ.World Bank: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in largest city in New Zealand was reported at 1692770 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. New Zealand - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand NZ: Population in Largest City: as % of Urban Population data was reported at 33.266 % in 2017. This records a decrease from the previous number of 33.580 % for 2016. New Zealand NZ: Population in Largest City: as % of Urban Population data is updated yearly, averaging 30.234 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 34.299 % in 2013 and a record low of 24.415 % in 1961. New Zealand NZ: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s New Zealand – Table NZ.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in the largest city (% of urban population) in New Zealand was reported at 36.41 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. New Zealand - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)).
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
High-definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
In 2023, the share of urban population in New Zealand remained nearly unchanged at around 86.98 percent. Still, the share reached its highest value in the observed period in 2023. A country's urbanization rate refers to the share of the total population living in an urban setting. International comparisons of urbanization rates may be inconsistent, due to discrepancies between definitions of what constitutes an urban center (based on population size, area, or space between dwellings, among others).Find more key insights for the share of urban population in countries like Micronesia and Tonga.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Urban rural 2023 update
UR 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure UR geographies are relevant and meet criteria before each five-yearly population and dwelling census. UR 2023 contains 13 new rural settlements and 7 new small urban areas. Updates were made to reflect real world change including new subdivisions and motorways, and to improve delineation of urban areas and rural settlements. The Wānaka urban area, whose population has grown to be more than 10,000 based on population estimates, has been reclassified to a medium urban area in the 2023 urban rural indicator.
In the 2023 classification there are:
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 745 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2023 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban population (people) by capital city using the aggregation sum in Australia and New Zealand. The data is filtered where the date is 2021. The data is about countries per year.
ps-places-metadata-v1.01
This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.
The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated
This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion:
- all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted.
- Then many additional points were added from a statnz meshblock density analysis.
- Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.
Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.
Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.
Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.
Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.
Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:
a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south
Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.
Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:
To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.
The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.
Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:
Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.
No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.
Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.
Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code
Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer
Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.
Peter Scott 16/6/2011
v1.01 minor spelling and grammar edits 17/6/11
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Statistical Area 2 2023 update
SA2 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure SA2s are relevant and meet criteria before each five-yearly population and dwelling census. SA2 2023 contains 135 new SA2s. Updates were made to reflect real world change of population and dwelling growth mainly in urban areas, and to make some improvements to their delineation of communities of interest.
Description
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)).
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NZ:最大城市人口在12-01-2017达1,377,309.000人,相较于12-01-2016的1,360,422.000人有所增长。NZ:最大城市人口数据按年更新,12-01-1960至12-01-2017期间平均值为851,045.500人,共58份观测结果。该数据的历史最高值出现于12-01-2017,达1,377,309.000人,而历史最低值则出现于12-01-1960,为440,164.000人。CEIC提供的NZ:最大城市人口数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的新西兰 – 表 NZ.世界银行:人口和城市化进程统计。
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background
Intentional self-harm is a common cause of hospital presentations in New Zealand and across the world, and self-poisoning is the most common method of self-harm. Paracetamol (acetaminophen) is frequently used in impulsive intentional overdoses, where ease of access may determine the choice of substance.
Objective
This cross-sectional study aimed to determine how much paracetamol is present and therefore accessible in urban New Zealand households, and sources from where it has been obtained. This information is not currently available through any other means, but could inform New Zealand drug policy on access to paracetamol.
Methods
Random cluster-sampling of households was performed in major urban areas of two cities in New Zealand, and the paracetamol-containing products, quantities, and sources were recorded. Population estimates of proportions of various types of paracetamol products were calculated.
Results
A total of 174 of the 201 study households (86.6%) had at least one paracetamol product. Study households had mostly prescription products (78.2% of total mass), and a median of 24.0 g paracetamol present per household (inter-quartile range 6.0-54.0 g). Prescribed paracetamol was the main source of large stock. Based on the study findings, 53% of New Zealand households had 30 g or more paracetamol present, and 36% had 30 g or more of prescribed paracetamol, specifically.
Conclusions
This study highlights the importance of assessing whether and how much paracetamol is truly needed when prescribing and dispensing it. Convenience of appropriate access to therapeutic paracetamol needs to be balanced with preventing unnecessary accumulation of paracetamol stocks in households and inappropriate access to it. Prescribers and pharmacists need to be aware of the risks of such accumulation and assess the therapeutic needs of their patients. Public initiatives should be rolled out at regular intervals to encourage people to return unused or expired medicines to pharmacies for safe disposal.
Methods The stocks of paracetamol-containing medicines (acetaminophen) held at a single time point in New Zealand households are described in this dataset. These data were collected via a cluster-sampling survey of two cities in New Zealand.
A door-to-door survey study with random, clustered sampling of consenting household members in two cities in New Zealand was designed. A total of 201 households in 40 meshblocks in two Major Urban Areas (MUAs; areas of 100,000 or more residents) of Dunedin and Auckland were sampled. Meshblocks are Statistics NZ’s smallest geographic unit, and roughly correspond to a city block or part of it. Random cluster-sampling of 20 meshblocks in each city was performed by deprivation level, where all eligible MUA meshblocks were stratified by their New Zealand Deprivation Index 2013 (NZDep2013) index scores, which describe the level of area deprivation by taking into account multiple relevant area and household variables. Six meshblocks were randomly selected from each city from NZDep2013 8-10 meshblocks (most deprived), eight from NZDep 4-7, and 6 from NZDep2013 1-2 (least deprived), for a total of 40 meshblocks. This was done to obtain a sample that would be representative of the general New Zealand population by levels of deprivation. Each meshblock was sampled by starting from a random end of the street and then tossing a dice to choose a house to approach, and repeating this until either five households were recruited or there were no more households to sample.
Trained Research Assistants (RAs) knocked on the doors of domiciles in each meshblock to be sampled, chosen by tossing a dice as described. Inclusion criteria: person present and usually residing in a domicile in a meshblock which was sampled, and aged 16 or over. Exclusion criteria: not able to give informed consent (intoxicated, aggressive, otherwise not safe to approach – nobody was excluded for this reason).
Household members aged 16 years and over were eligible to participate, and if consent was obtained, basic demographics were collected about the household (number of people usually residing in the household, their age, sex, ethnicity). Participants were then shown images of paracetamol-containing products (sole and combination), and requested to bring out all paracetamol products of their own, and any that were shared by the household in communal areas of the domicile. Private stock of any other residents of the household who were not present and were therefore unable to consent was not recorded for ethical reasons. If there were no paracetamol products present, that was recorded. If there were paracetamol products present, product type, strength, expiry date, purchase date and means of obtaining (by prescription, pharmacy over-the-counter [OTC], other retailer [i.e. not a pharmacy; e.g. supermarket, petrol station], other, unknown) were recorded.
The data were entered into a main database which is fully de-identified. Meshblock numbers are included in the dataset, but households are only given an identifier derived from the meshblock code. It would not be possible to identify a specific household from the data. Paracetamol product names were cleaned in the dataset (if there were any misspellings), and new variables were calculated to summarise the data (e.g. total household stock of prescribed paracetamol products, etc.).
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
NZ Suburbs and Localities describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Data Dictionary and the LINZ Website
Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Change Request Guidance Documents: - Change Request Process - Change Request Principles, Requirements and Rules
APIs and web services
This dataset is available via ArcGIS Online and ArcGIS REST services, as well as our standard APIs. LDS APIs and OGC web services ArcGIS Online map services
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays median age (year) by capital city using the aggregation average, weighted by population in Australia and New Zealand. The data is filtered where the date is 2021. The data is about countries per year.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their place of study, for the census usually resident population count who are studying (part time or full time), by main means of travel to education from the 2018 and 2023 Censuses.
The main means of travel to education categories are:
Main means of travel to education is the usual method a person used to travel the longest distance to their place of study.
Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.
Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Educational institution address time series
Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to education quality rating
Main means of travel to education is rated as moderate quality.
Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Educational institution address quality rating
Educational institution address is rated as moderate quality.
Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).
Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).
The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.
The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.
The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.
The database covers the following countries:
Afghanistan
Albania
Algeria
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Australia
Austria
Azerbaijan
Bahamas, The
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bhutan
Bolivia
Bosnia and Herzegovina
Brazil
Brunei
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo, Dem. Rep.
Congo, Rep.
Costa Rica
Cote d'Ivoire
Croatia
Cuba
Cyprus
Czech Republic
Denmark
Dominica
Dominican Republic
Ecuador
Egypt, Arab Rep.
El Salvador
Eritrea
Estonia
Ethiopia
Faeroe Islands
Fiji
Finland
France
Gabon
Gambia, The
Georgia
Germany
Ghana
Greece
Grenada
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong, China
Hungary
Iceland
India
Indonesia
Iran, Islamic Rep.
Iraq
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Korea, Dem. Rep.
Korea, Rep.
Kuwait
Kyrgyz Republic
Lao PDR
Latvia
Lebanon
Lesotho
Liberia
Liechtenstein
Lithuania
Luxembourg
Macao, China
Macedonia, FYR
Madagascar
Malawi
Malaysia
Maldives
Mali
Mauritania
Mexico
Moldova
Mongolia
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
Netherlands Antilles
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Romania
Russian Federation
Rwanda
Sao Tome and Principe
Saudi Arabia
Senegal
Sierra Leone
Singapore
Slovak Republic
Slovenia
Solomon Islands
Somalia
South Africa
Spain
Sri Lanka
St. Kitts and Nevis
St. Lucia
St. Vincent and the Grenadines
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syrian Arab Republic
Tajikistan
Tanzania
Thailand
Togo
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Venezuela, RB
Vietnam
Virgin Islands (U.S.)
Yemen, Rep.
Yugoslavia, FR (Serbia/Montenegro)
Zambia
Zimbabwe
Observation data/ratings [obs]
Other [oth]
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Statistical area 3 (SA3) is a new output geography, introduced in 2023, that allows aggregations of population data between the SA2 geography and territorial authority geography.
This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s.
The SA3 geography aims to meet three purposes:
approximate suburbs in major, large, and medium urban areas,
in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities,
minimise data suppression.
SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.
Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.
Zero or nominal population SA3s
To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.
Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.
Small population island SA2s are included in their adjacent land-based SA3.
Island SA2s outside territorial authority or region are the same in the SA3 geography.
Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.
Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.
Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.
The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):
70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.
SA3 numbering and naming
Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb,recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).
SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2023, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately **** million people lived in Auckland, making it the biggest city in New Zealand.