This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately **** million people lived in Auckland, making it the biggest city in New Zealand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in largest city in New Zealand was reported at 1692770 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. New Zealand - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand NZ: Population in Largest City data was reported at 1,377,309.000 Person in 2017. This records an increase from the previous number of 1,360,422.000 Person for 2016. New Zealand NZ: Population in Largest City data is updated yearly, averaging 851,045.500 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,377,309.000 Person in 2017 and a record low of 440,164.000 Person in 1960. New Zealand NZ: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s New Zealand – Table NZ.World Bank: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in the largest city (% of urban population) in New Zealand was reported at 36.41 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. New Zealand - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.
This statistic depicts the distribution of the major cities to the national GDP in New Zealand in 2015. According to the source, in this year, Auckland contributed with ** percent to the national GDP in New Zealand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand NZ: Population in Largest City: as % of Urban Population data was reported at 33.266 % in 2017. This records a decrease from the previous number of 33.580 % for 2016. New Zealand NZ: Population in Largest City: as % of Urban Population data is updated yearly, averaging 30.234 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 34.299 % in 2013 and a record low of 24.415 % in 1961. New Zealand NZ: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s New Zealand – Table NZ.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily digital data on bicycle use in New Zealand's three largest cities - Auckland, Wellington and Christchurch - was collected from publicly available sources on council websites from January 2016 to March 2024. The data was collected at multiple points throughout each city.Exponential smoothing with both backward and forward filling was used to impute missing data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays ranking by city using the aggregation sum in New Zealand. The data is about universities.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.
The main means of travel to work categories are:
Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.
Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.
Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Workplace address time series
Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.
Working at home
In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to work quality rating
Main means of travel to work is rated as moderate quality.
Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Workplace address quality rating
Workplace address is rated as moderate quality.
Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
In 2025, Otago came out on top as Australia’s Airbnb hub, home to the highest number of Airbnb listings across the New Zealand cities and regions represented, with over ***** listings. Auckland and Canterbury also emerged as Airbnb powerhouses in the country, with the next highest listing volumes that year.
The price of residential property in New Zealand was the highest in the Auckland region in June 2025, with an average sale price of around ******* New Zealand dollars. The most populated city in the country, Auckland, has consistently reported higher house prices compared to most other regions. Buying property in New Zealand, particularly in its major cities, is expensive. The nation has one of the highest house-price-to-income ratios in the world. Auckland residential market The residential housing market in Auckland is competitive. Prices have been slowly decreasing; the Auckland region experienced an annual decrease in the average residential house price in March 2025 compared to the same month in the previous year. The price of residential property in Auckland was the highest in the North Shore City district, with an average sale price of around **** million New Zealand dollars. Home financing Due to the rising cost of real estate, an increasing number of New Zealanders who want to own their own property are taking on mortgages. Most residential mortgage lending in New Zealand went to owner-occupier borrowers, followed by first home buyers. In addition to mortgage lending, previously under the KiwiSaver HomeStart initiative, first-home buyers in New Zealand were able to apply to withdraw all or part of their KiwiSaver retirement savings to assist with purchasing a first home. Nonetheless, the scheme was discontinued in May 2024. Furthermore, even with a large initial deposit, it may take decades for many borrowers to pay off their mortgage.
In 2025, Airbnbs in Queenstown had the highest average occupancy rates across the New Zealand cities and regions represented, with an average occupancy of around ** percent. Airbnbs in the Christchurch and Otago areas had the next highest occupancy rates that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NZ:最大城市人口:占城镇人口百分比在12-01-2017达33.266%,相较于12-01-2016的33.580%有所下降。NZ:最大城市人口:占城镇人口百分比数据按年更新,12-01-1960至12-01-2017期间平均值为30.234%,共58份观测结果。该数据的历史最高值出现于12-01-2013,达34.299%,而历史最低值则出现于12-01-1961,为24.415%。CEIC提供的NZ:最大城市人口:占城镇人口百分比数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的新西兰 – 表 NZ.世界银行:人口和城市化进程统计。
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Urban rural 2023 update
UR 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure UR geographies are relevant and meet criteria before each five-yearly population and dwelling census. UR 2023 contains 13 new rural settlements and 7 new small urban areas. Updates were made to reflect real world change including new subdivisions and motorways, and to improve delineation of urban areas and rural settlements. The Wānaka urban area, whose population has grown to be more than 10,000 based on population estimates, has been reclassified to a medium urban area in the 2023 urban rural indicator.
In the 2023 classification there are:
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 745 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2023 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NZ:最大城市人口在12-01-2017达1,377,309.000人,相较于12-01-2016的1,360,422.000人有所增长。NZ:最大城市人口数据按年更新,12-01-1960至12-01-2017期间平均值为851,045.500人,共58份观测结果。该数据的历史最高值出现于12-01-2017,达1,377,309.000人,而历史最低值则出现于12-01-1960,为440,164.000人。CEIC提供的NZ:最大城市人口数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的新西兰 – 表 NZ.世界银行:人口和城市化进程统计。
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The Water Supply industry in New Zealand has shown strong revenue growth over the past five years, predominantly due to supportive government policies and consistent population growth. Performance has also been influenced by rainfall, affecting the agricultural sector, which constitutes almost two-thirds of the country’s water consumption. High export market prices have led to increased production by farmers, increasing demand for water supply. This trend was exacerbated in 2023-24, when rainfall reached historically low levels, forcing farmers to rely on irrigation from water mains. Overarching all these trends has been consistently strong growth in variable volumetric water charges, charged to end users based on metered water usage. Annual expansions have consistently outpaced inflation, driving up real revenue. In total, revenue is expected to expand at an annualised 7.4% over the five years through 2025-26 to $1.6 billion, including an anticipated jump of 6.8% in 2025-26. Despite revenue growth, surpluses remain tight as most water suppliers are government or government-owned entities that reinvest profit back into capital expenditure. An exception is the Auckland region, where Watercare split from its affiliation with the Auckland Council in July 2025. In recent years, the industry has seen significant political involvement, stemming from New Zealand's water infrastructure challenges. The previous Labour Government’s proposed Three Waters Reform Programme faced political opposition and was replaced by the newly elected National Government's Local Water Done Well plan in February 2025, aimed at sustainable water services delivery. This movement is expected to drive a more stable future for the industry for future industry expansions. This framework will be reinforced by detailed Long Term Plans presented by each water supplier, projecting revenue and expenditure through to 2034. Environmental concerns are driving future trends around declining per capita water consumption. Trends in annual rainfall are also crucial, particularly to water-intensive industries like agriculture and could necessitate the implementation of water security strategies. Overall, revenue is forecast to rise at an annualised 3.7% over the five years through 2030-31, to total $1.8 billion.
Most cities in New Zealand experienced a decrease in hotel occupancy in 2022. Hotels in Wellington had the highest occupancy rate, amounting to ** percent, and in Christchurch occupancy decreased from ** percent to ** percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays international students (people) by city using the aggregation count in New Zealand. The data is about universities.
ps-places-metadata-v1.01
This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.
The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated
This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion:
- all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted.
- Then many additional points were added from a statnz meshblock density analysis.
- Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.
Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.
Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.
Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.
Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.
Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:
a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south
Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.
Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:
To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.
The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.
Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:
Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.
No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.
Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.
Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code
Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer
Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.
Peter Scott 16/6/2011
v1.01 minor spelling and grammar edits 17/6/11
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main means of travel to education categories are:Study at homeDrive a car, truck, or vanPassenger in a car, truck, or vanBicycleWalk or jogSchool busPublic busTrainFerryOther.Main means of travel to education is the usual method a person used to travel the longest distance to their place of study. Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA2 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.This dataset can be used in conjunction with the following spatial files by joining on the SA2 code values:Statistical area 2 2023 (generalised)Statistical area 2 2023 (Centroid Inside)FootnotesGeographical boundaries Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018. Subnational census usually resident population The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Population counts Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. Caution using time series Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data). Educational institution address time series Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.Rows excluded from the dataset Rows show SA2 of usual residence by SA2 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA2-SA2 combinations have commuter flows. About the 2023 Census dataset For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data quality The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.Main means of travel to education quality ratingMain means of travel to education is rated as moderate quality. Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.Educational institution address quality ratingEducational institution address is rated as moderate quality. Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality. Using data for good Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.Confidentiality The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.Percentages To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies. Symbol-999 ConfidentialInconsistencies in definitions Please note that there may be differences in definitions between census classifications and those used for other data collections.
This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately **** million people lived in Auckland, making it the biggest city in New Zealand.