Facebook
TwitterDelhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.
Facebook
TwitterDelhi was the largest city in terms of number of inhabitants in India in 2025. The capital city was estimated to house nearly 35 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for India Population In Largest City
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for Dataset Name
Includes Images for different Indian Cities.
Dataset Details
Each city has 2500 images
Dataset Description
This dataset contains 2500 images per Cities of popular indian Cities, City included are Ahmendabad, Mumbai, Delhi, Koklakta and A state Kerala.
Curated by: Divax Shah and Team
Dataset Sources
Demo: here
arXiv : https://arxiv.org/abs/2403.10912
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The below dataset shows the top 800 biggest cities in the world and their populations in the year 2024. It also tells us which country and continent each city is in, and their rank based on population size. Here are the top ten cities:
Facebook
TwitterBy Telangana Open Data [source]
This dataset provides comprehensive insights into the air traveling activity in the year 2017 for Hyderabad, India. It displays a list of domestic air travelers to and from this city to all other cities in India. You can access valuable specifics like the number of passengers recorded on each journey until October 2017. This useful collection of data from data.telangana.gov.in provides an essential glimpse into trends and patterns amongst Hyderabad's domestic air traffic, helping city planners and business make more informed decisions!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
How to Use 2017 Hyderabad Domestic Air Traffic Data
This dataset provides information about the number of air travelers that arrived in or left from Hyderabad, India in 2017. The data covers all major cities in India until October, giving users a chance to analyze and compare domestic air traffic between cities. This guide will provide an overview on how to use this data set effectively.
Exploring the Dataset
The dataset contains two columns: ‘level_0’ which is the index of the dataframe and ‘M passengers’ which is the number of passengers listed for each airport. It is important to remember that the numbers correspond to they year 2017 only and not current passenger rates. Exploring this data will allow users understand trends in travel patterns across different cities throughout India over a period of time.
Analyzing Trends with Maps
Using mapping technologies such as CartoDB will allow users build dynamic visualizations and gain a better understanding on temporal changes that occur within Indian domestic air travel since start of 2017 up until October 2017. Comparing these maps with socio-economic metrics will also allow deeper analysis on population demographics across India’s top flight routes; useful information when creating marketing plans or proposals related aviation expansion projects etc...
### Additional Analysis Tools Besides mapping tools such as CartoDB; other tools like R can be used to run various statistical models related estimating future traffic volumes based on present passenger patterns, creating correlation networks between selected cities compared side by side against socio-economic trends etc.. Finally SPSS can be used run qualitative analysis those interested in analyzing more subjective avaiation industry related studies such as airliners customer services ratings by destinations city or feedback surveys pre post domestic flights taken throughout certain regions within India etc.
- Constructing a detailed visualization of the air transportation patterns from Hyderabad to all other cities in India, offering an increased understanding of both high traffic and low traffic destinations.
- Understanding passenger demand for different travel providers such as AirAsia, Indigo etc in the city and predicting possible growth trends for them.
- Refining marketing strategies for flight-based travel services by establishing their target market within the Hyerabad area and subsequently utilizing data-driven tactics to increase sales
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: 2017 Hyderabad Domestic Air Traffic.csv | Column name | Description | |:--------------|:------------------------------------------| | level_0 | Unique identifier for each row. (Integer) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Telangana Open Data.
Facebook
TwitterAs of September 2025, Mumbai had the highest cost of living among other cities in the country, with an index value of ****. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of ****. What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 333 cities in the Massachusetts by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterThis statistic illustrates the consumption expenditure per capita across the largest cities in India in 2015. The nation capital region, Delhi, had a per capita consumer expenditure of approximately ******* Indian rupees. Bangalore had the highest per capita consumption expenditure during the measured time period.
The global per capita expenditure on apparel in 2015 and 2025, broken down by region, can be found here.
Facebook
TwitterThe dataset was created by keeping in mind the necessity of such historical weather data in the community. The datasets for top 8 Indian cities as per the population.
The dataset was used with the help of the worldweatheronline.com API and the wwo_hist package. The datasets contain hourly weather data from 01-01-2009 to 01-01-2020. The data of each city is for more than 10 years. This data can be used to visualize the change in data due to global warming or can be used to predict the weather for upcoming days, weeks, months, seasons, etc. Note : The data was extracted with the help of worldweatheronline.com API and I can't guarantee about the accuracy of the data.
The data is owned by worldweatheronline.com and is extracted with the help of their API.
The main target of this dataset can be used to predict weather for the next day or week with huge amounts of data provided in the dataset. Furthermore, this data can also be used to make visualization which would help to understand the impact of global warming over the various aspects of the weather like precipitation, humidity, temperature, etc.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 473 cities in the California by Indian population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAs of 2024, Mumbai had a gross domestic product of *** billion U.S. dollars, the highest among other major cities in India. It was followed by Delhi with a GDP of around *** billion U.S. dollars. India’s megacities also boast the highest GDP among other cities in the country. What drives the GDP of India’s megacities? Mumbai is the financial capital of the country, and its GDP growth is primarily fueled by the financial services sector, port-based trade, and the Hindi film industry or Bollywood. Delhi in addition to being the political hub hosts a significant services sector. The satellite cities of Noida and Gurugram amplify the city's economic status. The southern cities of Bengaluru and Chennai have emerged as IT and manufacturing hubs respectively. Hyderabad is a significant player in the pharma and IT industries. Lastly, the western city of Ahmedabad, in addition to its strategic location and ports, is powered by the textile, chemicals, and machinery sectors. Does GDP equal to quality of life? Cities propelling economic growth and generating a major share of GDP is a global phenomenon, as in the case of Tokyo, Shanghai, New York, and others. However, the GDP, which measures the market value of all final goods and services produced in a region, does not always translate to a rise in quality of life. Five of India’s megacities featured in the Global Livability Index, with low ranks among global peers. The Index was based on indicators such as healthcare, political stability, environment and culture, infrastructure, and others.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the median household income in Indian Village. It can be utilized to understand the trend in median household income and to analyze the income distribution in Indian Village by household type, size, and across various income brackets.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Indian Village median household income. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays countries yearly by capital city using the aggregation count in India. The data is filtered where the date is 2021. The data is about countries per year.
Facebook
TwitterIn the second half of 2023, Hyderabad showed the highest growth of ** percent in residential unit price. There was a general increase in prices per square feet in the residential market in all eight major metropolitan regions. The residential real estate market has slowly recovered from coronavirus pandemic. The coronavirus (COVID-19) pandemic as well as a high number of unsold inventories in many cities, especially in the premium and luxury segments, are perceived to be the main drivers for decreasing prices. India’s residential market While the majority of India’s population is still living in rural areas, urbanization is increasing. This results in a high demand for affordable housing in big cities for workers moving from rural parts of the country. Despite a new momentum in governmental efforts for affordable housing in recent years, there is still a gap between the low, middle, and high income groups in terms of demand and supply of housing units. The future outlook Over the last ten years, housing in the biggest Indian cities has become more affordable. Affordability sets income in relation to housing prices. Nevertheless, it is seen that the residential real estate market would continue to grow significantly in the coming years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure (% of GDP) by capital city using the aggregation average, weighted by gdp in India. The data is about countries per year.
Facebook
TwitterThis dataset contains swiggy registered restaurants details of major metropoliton cities of India. I have considered only metropoliton cities with population 4.5 million. As per the Census of India 2011 definition of more than 4 million population, some of the major Metropolitan Cities in India are:
Mumbai (more than 18 Million) Delhi (more than 16 Million) Kolkata (more than 14 Million) Chennai (more than 8.6 million) Bangalore (around 8.5 million) Hyderabad (around 7.6 million) Ahmedabad (around 6.3 million) Pune (around 5.05 million) Surat (around 4.5 million)
I have scrapped the data using python. It may not have all the restaurants of a particular city because if during webscrapping any restaurant has not enabled swiggy as their delivery partner, that restaurant's details will not be scrapped. Though I have scrapped same cities multiple times, to include maximum restaurant details. The data is collected on 12th Jan 2022.
Thank you swiggy for the dataset.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The datasets contains date- and state-wise historically compiled data on air quality (by pollution level) in rural and urban areas of India from the year 2015 , as measured by Central Pollution Board (CPCB) through its daily (24 hourly measurements, taken at 4 PM everyday) Air Quality Index (AQI) reports.
The CPCB measures air quality by continuous online monitoring of various pollutants such as Particulate Matter10 (PM10), Particulate Matter2.5 (PM2.5), Sulphur Dioxide (SO2), Nitrogen Oxide or Oxides of Nitrogen (NO2), Ozone (O3), Carbon Monoxide (CO), Ammonic (NH3) and Lead (Pb) and calculating their level of pollution in the ambient air. Based on the each pollutant load in the air and their associated health impacts, the CPCB calculates the overall Air Pollution in Air Quality Index (AQI) value and publishes the data. This AQI data is then used by CPCB to report the air quality status i.e good, satisfactory, moderate, poor, very poor and severe, etc. of a particular location and their related health impacts because of air pollution.
Facebook
TwitterIn 2021, Delhi had the highest metro coverage among major metropolitan cities in India with ** operational kilometers per *********** people. At the same time, Mumbai had the lowest coverage with only *** operational kilometers per *********** people. Poor public transportation in many Indian cities was responsible for traffic congestion and air pollution.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIndia has the highest burden of tuberculosis (TB). Although most patients with TB in India seek care from the private sector, there is limited evidence on quality of TB care or its correlates. Following our validation study on the standardized patient (SP) method for TB, we utilized SPs to examine quality of adult TB care among health providers with different qualifications in 2 Indian cities.Methods and findingsDuring 2014–2017, pilot programs engaged the private health sector to improve TB management in Mumbai and Patna. Nested within these projects, to obtain representative, baseline measures of quality of TB care at the city level, we recruited 24 adults to be SPs. They were trained to portray 4 TB “case scenarios” representing various stages of disease and diagnostic progression. Between November 2014 and August 2015, the SPs visited representatively sampled private providers stratified by qualification: (1) allopathic providers with Bachelor of Medicine, Bachelor of Surgery (MBBS) degrees or higher and (2) non-MBBS providers with alternative medicine, minimal, or no qualifications.Our main outcome was case-specific correct management benchmarked against the Standards for TB Care in India (STCI). Using ANOVA, we assessed variation in correct management and quality outcomes across (a) cities, (b) qualifications, and (c) case scenarios. Additionally, 2 micro-experiments identified sources of variation: first, quality in the presence of diagnostic test results certainty and second, provider consistency for different patients presenting the same case.A total of 2,652 SP–provider interactions across 1,203 health facilities were analyzed. Based on our sampling strategy and after removing 50 micro-experiment interactions, 2,602 interactions were weighted for city-representative interpretation. After weighting, the 473 Patna providers receiving SPs represent 3,179 eligible providers in Patna; in Mumbai, the 730 providers represent 7,115 eligible providers. Correct management was observed in 959 out of 2,602 interactions (37%; 35% weighted; 95% CI 32%–37%), primarily from referrals and ordering chest X-rays (CXRs). Unnecessary medicines were given to nearly all SPs, and antibiotic use was common. Anti-TB drugs were prescribed in 118 interactions (4.5%; 5% weighted), of which 45 were given in the case in which such treatment is considered correct management.MBBS and more qualified providers had higher odds of correctly managing cases than non-MBBS providers (odds ratio [OR] 2.80; 95% CI 2.05–3.82; p < 0.0001). Mumbai non-MBBS providers had higher odds of correct management than non-MBBS in Patna (OR 1.79; 95% CI 1.06–3.03), and MBBS providers’ quality of care did not vary between cities (OR 1.15; 95% CI 0.79–1.68; p = 0.4642). In the micro-experiments, improving diagnostic certainty had a positive effect on correct management but not across all quality dimensions. Also, providers delivered idiosyncratically consistent care, repeating all observed actions, including mistakes, approximately 75% of the time. The SP method has limitations: it cannot account for patient mix or care-management practices reflecting more than one patient–provider interaction.ConclusionsQuality of TB care is suboptimal and variable in urban India’s private health sector. Addressing this is critical for India’s plans to end TB by 2025. For the first time, we have rich measures on representative levels of care quality from 2 cities, which can inform private-sector TB interventions and quality-improvement efforts.
Facebook
TwitterDelhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.