11 datasets found
  1. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  2. Share of population in the U.S. vaccinated against COVID-19, Apr. 26, 2023,...

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of population in the U.S. vaccinated against COVID-19, Apr. 26, 2023, by state [Dataset]. https://www.statista.com/statistics/1202065/population-with-covid-vaccine-by-state-us/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of April 26, 2023, around 81.3 percent of the U.S. population had received at least one dose of a COVID-19 vaccination. This statistic shows the percentage of the population in the United States who had been given a COVID-19 vaccination as of April 26, 2023, by state or territory.

  3. d

    COVID-19 Outcomes by Vaccination Status - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated May 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-outcomes-by-vaccination-status
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic

  4. Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent)...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent) Booster Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/54ys-qyzm
    Explore at:
    xml, json, tsv, csv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes

    Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status

    Dataset and data visualization details:

    These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.

    Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.

    Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.

    Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.

    Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.

    Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.

    Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.

    Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.

    References

    Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.

    Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

    Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152

  5. ARCHIVED: COVID-19 Cases by Vaccination Status Over Time

    • healthdata.gov
    • data.sfgov.org
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases by Vaccination Status Over Time [Dataset]. https://healthdata.gov/dataset/ARCHIVED-COVID-19-Cases-by-Vaccination-Status-Over/evps-wwsc
    Explore at:
    application/rssxml, csv, json, application/rdfxml, tsv, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    On 6/28/2023, data on cases by vaccination status will be archived and will no longer update.

    A. SUMMARY This dataset represents San Francisco COVID-19 positive confirmed cases by vaccination status over time, starting January 1, 2021. Cases are included on the date the positive test was collected (the specimen collection date). Cases are counted in three categories: (1) all cases; (2) unvaccinated cases; and (3) completed primary series cases.

    1. All cases: Includes cases among all San Francisco residents regardless of vaccination status.

    2. Unvaccinated cases: Cases are considered unvaccinated if their positive COVID-19 test was before receiving any vaccine. Cases that are not matched to a COVID-19 vaccination record are considered unvaccinated.

    3. Completed primary series cases: Cases are considered completed primary series if their positive COVID-19 test was 14 days or more after they received their 2nd dose in a 2-dose COVID-19 series or the single dose of a 1-dose vaccine. These are also called “breakthrough cases.”

    On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.

    Data is lagged by eight days, meaning the most recent specimen collection date included is eight days prior to today. All data updates daily as more information becomes available.

    B. HOW THE DATASET IS CREATED Case information is based on confirmed positive laboratory tests reported to the City. The City then completes quality assurance and other data verification processes. Vaccination data comes from the California Immunization Registry (CAIR2). The California Department of Public Health runs CAIR2. Individual-level case and vaccination data are matched to identify cases by vaccination status in this dataset. Case records are matched to vaccine records using first name, last name, date of birth, phone number, and email address.

    We include vaccination records from all nine Bay Area counties in order to improve matching rates. This allows us to identify breakthrough cases among people who moved to the City from other Bay Area counties after completing their vaccine series. Only cases among San Francisco residents are included.

    C. UPDATE PROCESS Updates automatically at 08:00 AM Pacific Time each day.

    D. HOW TO USE THIS DATASET Total San Francisco population estimates can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). To identify total San Francisco population estimates, filter the view on “demographic_category_label” = “all ages”.

    Population estimates by vaccination status are derived from our publicly reported vaccination counts, which can be found at COVID-19 Vaccinations Given to SF Residents Over Time.

    The dataset includes new cases, 7-day average new cases, new case rates, 7-day average new case rates, percent of total cases, and 7-day average percent of total cases for each vaccination category.

    New cases are the count of cases where the positive tests were collected on that specific specimen collection date. The 7-day rolling average shows the trend in new cases. The rolling average is calculated by averaging the new cases for a particular day with the prior 6 days.

    New case rates are the count of new cases per 100,000 residents in each vaccination status group. The 7-day rolling average shows the trend in case rates. The rolling average is calculated by averaging the case rate for a part

  6. Deaths Involving COVID-19 by Vaccination Status

    • ouvert.canada.ca
    • datasets.ai
    • +3more
    csv, docx, html, xlsx
    Updated Jun 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://ouvert.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    xlsx, html, docx, csvAvailable download formats
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  7. Weekly COVID-19 cases among persons ≥5 years old among unvaccinated and...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Weekly COVID-19 cases among persons ≥5 years old among unvaccinated and vaccinated with a BNT162b2 (Pfizer-BioNTech) primary series by age group — 22 U.S. jurisdictions, January 16 to May 28, 2022 [Dataset]. https://data.virginia.gov/dataset/weekly-covid-19-cases-among-persons-5-years-old-among-unvaccinated-and-vaccinated-with-28-2022
    Explore at:
    rdf, xsl, json, csvAvailable download formats
    Dataset updated
    Aug 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Reported numbers of SARS-CoV-2 infections by age group (5–11, 12–17, 18–49, 50–64, ≥65 years of age) from 22 U.S. jurisdictions (AR, AZ, CA, CO, CT, DC, FL, GA, IN, KS, MI, MA, MN, NC, NE, NJ, NM, NYC, PHL, TN, UT, WI ); ~53% of the U.S. population) with routine linkages between COVID-19 case surveillance and immunization information system (IIS) data reported to CDC during January 16, 2022 – May 28, 2022. Vaccine administration (coverage) data reported to CDC were aggregated by U.S. reporting jurisdiction, MMWR week of vaccination (≥14 days after completing the primary vaccine series), FDA-approved vaccine products, and age group (5–11, 12–17, 18–49, 50–64, ≥65 years). Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing BNT162b2 (Pfizer-BioNTech) primary series. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. To estimate the number of unvaccinated persons in each MMWR week, the 2019 U.S. Census population estimates by jurisdiction and age group were used (except for California, where State Department of Finance 2021 population projections were determined to be more accurate). The number of unvaccinated persons each MMWR week was estimated by subtracting the cumulative number of vaccinated (all products) and partially vaccinated persons (all products) from the respective population totals for each jurisdiction and age group. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent rates from growing unrealistically large due to potential overestimates of vaccination coverage.

  8. f

    Data_Sheet_1_COVID-19 Vaccine Hesitancy in the United States: A Systematic...

    • frontiersin.figshare.com
    • figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farah Yasmin; Hala Najeeb; Abdul Moeed; Unaiza Naeem; Muhammad Sohaib Asghar; Najeeb Ullah Chughtai; Zohaib Yousaf; Binyam Tariku Seboka; Irfan Ullah; Chung-Ying Lin; Amir H. Pakpour (2023). Data_Sheet_1_COVID-19 Vaccine Hesitancy in the United States: A Systematic Review.docx [Dataset]. http://doi.org/10.3389/fpubh.2021.770985.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Farah Yasmin; Hala Najeeb; Abdul Moeed; Unaiza Naeem; Muhammad Sohaib Asghar; Najeeb Ullah Chughtai; Zohaib Yousaf; Binyam Tariku Seboka; Irfan Ullah; Chung-Ying Lin; Amir H. Pakpour
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Vaccine hesitancy in the US throughout the pandemic has revealed inconsistent results. This systematic review has compared COVID-19 vaccine uptake across US and investigated predictors of vaccine hesitancy and acceptance across different groups. A search of PUBMED database was conducted till 17th July, 2021. Articles that met the inclusion criteria were screened and 65 studies were selected for a quantitative analysis. The overall vaccine acceptance rate ranged from 12 to 91.4%, the willingness of studies using the 10-point scale ranged from 3.58 to 5.12. Increased unwillingness toward COVID-19 vaccine and Black/African Americans were found to be correlated. Sex, race, age, education level, and income status were identified as determining factors of having a low or high COVID-19 vaccine uptake. A change in vaccine acceptance in the US population was observed in two studies, an increase of 10.8 and 7.4%, respectively, between 2020 and 2021. Our results confirm that hesitancy exists in the US population, highest in Black/African Americans, pregnant or breastfeeding women, and low in the male sex. It is imperative for regulatory bodies to acknowledge these statistics and consequently, exert efforts to mitigate the burden of unvaccinated individuals and revise vaccine delivery plans, according to different vulnerable subgroups, across the country.

  9. d

    Student COVID Vaccinations (3-24-2022)

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Student COVID Vaccinations (3-24-2022) [Dataset]. https://catalog.data.gov/dataset/student-covid-vaccinations-3-24-2022
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    1) Register is as of reporting date 2) Only includes schools and programs in Districts 1-32 and District 75 3) NYCEECs and District PreK Centers are excluded 4) District 75 Home and Hospital Instruction programs and students are excluded 5) Percents are of active students ages 5 and up, not of all students (any four year olds are exluded as they are not yet eligible for vaccination) 1) Enrollment as of last day of reporting period 2) Only schools and programs in Districts 1-32 and District 75 3) NYCEECs and District PreK Centers are excluded 4) District 75 Home and Hospital Instruction programs and students are excluded 5) For consent and consent withdrawal, only Covid-19 testing eligible students are included (Grades 1-12) 6) For unvaccinated population, only students aged 5 or above as of the day before the beginning of the reporting period are included "7) Under the Family Educational Rights and Privacy Act (FERPA), educational agencies and institutions reporting or releasing data derived from education records are responsible for protecting personally identifiable information (PII) in their reports from disclosure. a) If a cell is ≤ 5 the value is suppressed (""S""), and the next highest value in that row is also suppressed (""S""). b) If a cell is within 5 of the total number of students for the subgroup, the value is suppressed (""T""), and the next highest value in that row is also suppressed (""T""). This is necessary, because it is a FERPA violation to disclose that no students in a subgroup were vaccinated. This report includes counts of unvaccinated students, therefore data suppression is necessary on the maximum values also." 8) An empty cell indicates that there are no students for that grade or subgroup

  10. f

    Data Sheet 1_An observational post-authorization study to assess the...

    • frontiersin.figshare.com
    docx
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amelia Boehme; Raymond A. Harvey; Ann Madsen; Lexie Rubens; Astra Toyip; Michael Batech; Deborah Ricci; Mawuli Nyaku (2024). Data Sheet 1_An observational post-authorization study to assess the effectiveness of a single dose Ad26.COV2.S for the prevention of COVID-19 using real-world data.docx [Dataset]. http://doi.org/10.3389/fpubh.2024.1501919.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Frontiers
    Authors
    Amelia Boehme; Raymond A. Harvey; Ann Madsen; Lexie Rubens; Astra Toyip; Michael Batech; Deborah Ricci; Mawuli Nyaku
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe goal of this FDA-committed, post authorization study was to assess the real-world effectiveness of Ad26.COV2.S in preventing observed COVID-19 disease in individuals in the United States interacting with the healthcare system who were vaccinated according to the national immunization recommendations.MethodsThe study cohort consisted of individuals ≥18 years in the U.S. between March 1, 2021 and July 31, 2022. Two exposure groups were considered: those who received a single dose of COVID-19 Ad26.COV2.S vaccine and individuals who were unvaccinated. Individuals eligible for the referent group, defined as those who were unvaccinated, were identified through exact matching on age, sex, location, and Gagne comorbidity score. Propensity-score (PS) matched Cox proportional hazards models were used to evaluate COVID-19 related outcomes.ResultsA total of 478,162 vaccinated, and 1,897,759 risk set sampled (RSS) and PS-matched unvaccinated referent individuals were included. The vaccine effectiveness (VE) against any observed COVID-19 disease was 20% (95% CI, 19 to 21%). VE increased as the outcome severity increased. The VE against COVID-19 related hospitalizations was 43% (95% CI, 40 to 45%). VE was highest, 53% (95% CI, 42 to 61%), against all-cause mortality temporally associated with COVID-19. The results of subgroup analyses generally showed a similar pattern as the main analyses with VE increasing in parallel with seriousness of outcomes, albeit with lower VE in groups thought to be at higher risk of COVID-19.DiscussionThis population-representative cohort study in U.S. clinical practice showed that a single dose of Ad26.COV2.S is effective for at least 12 months against several COVID-19 related outcomes. Individuals who were vaccinated with a single dose of Ad26.COV2.S were at lower risk for developing COVID-19, for being hospitalized for COVID-19, and for all-cause mortality temporally associated with COVID-19 compared to unvaccinated individuals in the U.S. during Alpha, Delta, and Omicron BA.1, BA.2, BA.212.1, and BA.5 variants circulation.

  11. D

    COVID-19 Testing Kits Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). COVID-19 Testing Kits Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-covid-19-testing-kits-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    COVID-19 Testing Kits Market Outlook



    The global COVID-19 testing kits market size in 2023 is estimated to be around USD 11.5 billion, and it is projected to reach approximately USD 23 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.5%. The growth of this market is largely driven by the ongoing need for widespread testing to control the pandemic, the emergence of new variants, and the continued emphasis on public health measures.



    One of the primary growth factors for the COVID-19 testing kits market is the sustained demand for comprehensive and accurate testing solutions as part of the global healthcare response to the pandemic. Even as vaccination rates increase, testing remains crucial due to the potential for breakthrough infections, the need to monitor the spread of new variants, and the requirement for testing among unvaccinated populations. Governments and health organizations continue to allocate significant resources to improve testing infrastructure and accessibility, further bolstering market growth.



    Technological advancements in testing methodologies have also played a pivotal role in driving the market forward. Innovations such as rapid antigen tests, PCR kits with enhanced sensitivity, and the development of home testing kits have made COVID-19 testing more accessible and faster. These advancements help in timely diagnosis and isolation of infected individuals, which is crucial for controlling the spread of the virus. Moreover, continuous R&D efforts are focused on improving test accuracy, reducing result turnaround times, and enhancing user convenience, thus contributing to market expansion.



    The increasing awareness and acceptance of the importance of regular testing across various sectors, including healthcare, travel, education, and the workplace, is another significant growth factor. Organizations are implementing regular testing protocols to ensure the safety of their employees and customers. The requirement for negative test results for international travel and events is also driving the demand for rapid and reliable testing solutions. Additionally, public health campaigns emphasizing the importance of testing have led to higher compliance rates among the general population.



    COVID-19 Nucleic Acid Testing Kits have become a cornerstone in the fight against the pandemic, offering unparalleled accuracy in detecting the virus's genetic material. These kits, primarily based on PCR technology, are essential for confirming active infections and are widely used in both clinical and research settings. Their high sensitivity and specificity make them invaluable tools for healthcare providers, enabling them to make informed decisions about patient care and public health strategies. As the virus continues to evolve, the demand for nucleic acid testing kits remains robust, with ongoing innovations aimed at enhancing their efficiency and reducing turnaround times. The integration of these kits into routine testing protocols across various sectors underscores their critical role in managing the pandemic.



    Regionally, North America and Europe continue to dominate the COVID-19 testing kits market due to robust healthcare infrastructure, high testing rates, and substantial government investments in pandemic response measures. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period. This growth can be attributed to large populations, increasing testing requirements, and improving healthcare infrastructure in countries like India and China. Additionally, Latin America and the Middle East & Africa are showing significant potential for market growth, driven by increasing awareness and improving accessibility to testing solutions.



    Product Type Analysis



    The COVID-19 testing kits market is segmented by product type into PCR kits, antigen kits, antibody kits, and others. Each category serves a unique purpose in the detection and management of COVID-19. PCR kits have been the gold standard for detecting active infections due to their high sensitivity and specificity. These kits detect the genetic material of the virus and are widely used in laboratories and healthcare facilities globally. The increasing demand for accurate and reliable testing is driving the growth of the PCR kits segment.



    Antigen kits, known for their rapid turnaround time, have gained significant traction, especially for point-of-care and ho

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
Organization logo

Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
Dataset updated
Feb 22, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC COVID-19 Response, Epidemiology Task Force
Description

Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

Search
Clear search
Close search
Google apps
Main menu