Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers. Updated on a quarterly basis, this BigQuery dataset includes an archive of Stack Overflow content, including posts, votes, tags, and badges. This dataset is updated to mirror the Stack Overflow content on the Internet Archive, and is also available through the Stack Exchange Data Explorer. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Google Patents Public Data, provided by IFI CLAIMS Patent Services, is a worldwide bibliographic and US full-text dataset of patent publications. Patent information accessibility is critical for examining new patents, informing public policy decisions, managing corporate investment in intellectual property, and promoting future scientific innovation. The growing number of available patent data sources means researchers often spend more time downloading, parsing, loading, syncing and managing local databases than conducting analysis. With these new datasets, researchers and companies can access the data they need from multiple sources in one place, thus spending more time on analysis than data preparation.
The Google Patents Public Data dataset contains a collection of publicly accessible, connected database tables for empirical analysis of the international patent system.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:patents
For more info, see the documentation at https://developers.google.com/web/tools/chrome-user-experience-report/
“Google Patents Public Data” by IFI CLAIMS Patent Services and Google is licensed under a Creative Commons Attribution 4.0 International License.
Banner photo by Helloquence on Unsplash
This dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.瞭解詳情
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Adapted from Wikipedia: OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world. Created in 2004, it was inspired by the success of Wikipedia and more than two million registered users who can add data by manual survey, GPS devices, aerial photography, and other free sources.
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
This is the OpenStreetMap (OSM) planet-wide dataset loaded to BigQuery.
Tables:
- history_*
tables: full history of OSM objects.
- planet_*
tables: snapshot of current OSM objects as of Nov 2019.
The history_*
and planet_*
table groups are composed of node, way, relation, and changeset tables. These contain the primary OSM data types and an additional changeset corresponding to OSM edits for convenient access. These objects are encoded using the BigQuery GEOGRAPHY data type so that they can be operated upon with the built-in geography functions to perform geometry and feature selection, additional processing.
You can read more about OSM elements on the OSM Wiki. This dataset uses BigQuery GEOGRAPHY datatype which supports a set of functions that can be used to analyze geographical data, determine spatial relationships between geographical features, and construct or manipulate GEOGRAPHYs.
TheLook is a fictitious eCommerce clothing site developed by the Looker team. The dataset contains information about customers, products, orders, logistics, web events and digital marketing campaigns. The contents of this dataset are synthetic, and are provided to industry practitioners for the purpose of product discovery, testing, and evaluation. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.What is BigQuery .
The datastore-bigquery extension for CKAN allows users to leverage Google Cloud BigQuery for datastore search and SQL queries, providing an alternative to CKAN's standard datastore. By integrating with BigQuery, this extension aims to enhance performance and scalability for data-intensive operations against data stored as BigQuery tables. This plugin allows CKAN to query data that actually resides in Google BigQuery. Key Features: BigQuery Integration: Enables CKAN's datastore search and datastore SQL API to query data directly from Google BigQuery tables. Alternative to Standard Datastore: Offers BigQuery as a backend option, providing users with flexibility in choosing their data storage and query engine. Credential-Based Authentication: Relies on Google Cloud credentials (JSON file) for secure authentication and authorization to BigQuery resources. Test Suite Comes with a test suite that can be can be run as a standalone instance via pytest or also run as an integrated CKAN plugin via nosetests. Technical Integration: The extension integrates into CKAN as a plugin. You will need to enable it in the .ini configuration file. The extension uses Google Cloud credentials to authenticate and authorize access to BigQuery, enabling seamless data access and querying within the CKAN environment. Benefits & Impact: This extension is valuable for CKAN deployments dealing with big datasets hosted in BigQuery, offering potentially significant performance and scalability benefits compared to CKAN's default datastore implementation. The ability to use BigQuery as the data backend removes dependency / limitations on the CKAN datastore.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Patent Examination Data System gives users access to multiple records of USPTO patent application or patent filing status at no cost. PEDS is updated daily and mirrors the data available in the Patent Application Location and Monitoring system (PALM). PEDS provides access to public applications including: published patent applications and patents. PCT applications that have not been published by WIPO. Any applications that have not been released by the USPTO will not be available in PEDS.
USPTO Patent Examiner Data System (PEDS) API Data contains data from the examination process of USPTO patent applications. PEDS contains the bibliographic, published document and patent term extension data tabs in Public PAIR from 1981 to present. There is also some data dating back to 1935.
Fork this notebook to get started on accessing data in the BigQuery dataset using the BQhelper package to write SQL queries.
"Patent Examination Data System" by the USPTO, for public use.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:uspto_peds
Banner photo by Thought Catalog on Unsplash
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
The United States Environmental Protection Agency (EPA) protects both public health and the environment by establishing the standards for national air quality. The EPA provides annual summary data as well as hourly and daily data in the categories of criteria gases, particulates, meteorological, and toxics. These datasets include measurements beginning in 1990 and are updated twice a year. In June, the complete data for the previous year is updated, and in December the summer data is updated. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
OCE collected all of the data from the Public Access to Court Electronics Records (PACER) and RECAP, an independent project designed to serve as a repository for litigation data sourced from PACER. The final output datasets include information on the litigating parties involved and their attorneys; the cause of action; the court location; important dates in the litigation history; and descriptions of all documents submitted in a given case, which cover more than 5 million separate documents contained in the case docket reports.
USPTO OCE Patent Litigation Docket Reports Data contains detailed patent litigation data on 74,623 unique district court cases filed during the period 1963-2015.
"USPTO OCE Patent Litigation Docket Reports Data" by the USPTO, for public use. Marco, A., A. Tesfayesus, A. Toole (2017). “Patent Litigation Data from US District Court Electronic Records (1963-2015).” USPTO Economic Working Paper No. 2017-06.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:uspto_oce_litigation
Banner photo by Samuel Zeller on Unsplash
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dogecoin is an open source peer-to-peer digital currency, favored by Shiba Inus worldwide. It is qualitatively more fun while being technically nearly identical to its close relative Bitcoin. This dataset contains the blockchain data in their entirety, pre-processed to be human-friendly and to support common use cases such as auditing, investigating, and researching the economic and financial properties of the system.
You can access the data from BigQuery in your notebook with bigquery-public-data.crypto_dogecoin
dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_dogecoin.[TABLENAME].
This dataset wouldn't be possible without the help of BigQuery and all of their contributions to public data.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cannabis is a genus of flowering plants in the family Cannabaceae.
Source: https://en.wikipedia.org/wiki/Cannabis
In October 2016, Phylos Bioscience released a genomic open dataset of approximately 850 strains of Cannabis via the Open Cannabis Project. In combination with other genomics datasets made available by Courtagen Life Sciences, Michigan State University, NCBI, Sunrise Medicinal, University of Calgary, University of Toronto, and Yunnan Academy of Agricultural Sciences, the total amount of publicly available data exceeds 1,000 samples taken from nearly as many unique strains.
These data were retrieved from the National Center for Biotechnology Information’s Sequence Read Archive (NCBI SRA), processed using the BWA aligner and FreeBayes variant caller, indexed with the Google Genomics API, and exported to BigQuery for analysis. Data are available directly from Google Cloud Storage at gs://gcs-public-data--genomics/cannabis, as well as via the Google Genomics API as dataset ID 918853309083001239, and an additional duplicated subset of only transcriptome data as dataset ID 94241232795910911, as well as in the BigQuery dataset bigquery-public-data:genomics_cannabis.
All tables in the Cannabis Genomes Project dataset have a suffix like _201703. The suffix is referred to as [BUILD_DATE] in the descriptions below. The dataset is updated frequently as new releases become available.
The following tables are included in the Cannabis Genomes Project dataset:
Sample_info contains fields extracted for each SRA sample, including the SRA sample ID and other data that give indications about the type of sample. Sample types include: strain, library prep methods, and sequencing technology. See SRP008673 for an example of upstream sample data. SRP008673 is the University of Toronto sequencing of Cannabis Sativa subspecies Purple Kush.
MNPR01_reference_[BUILD_DATE] contains reference sequence names and lengths for the draft assembly of Cannabis Sativa subspecies Cannatonic produced by Phylos Bioscience. This table contains contig identifiers and their lengths.
MNPR01_[BUILD_DATE] contains variant calls for all included samples and types (genomic, transcriptomic) aligned to the MNPR01_reference_[BUILD_DATE] table. Samples can be found in the sample_info table. The MNPR01_[BUILD_DATE] table is exported using the Google Genomics BigQuery variants schema. This table is useful for general analysis of the Cannabis genome.
MNPR01_transcriptome_[BUILD_DATE] is similar to the MNPR01_[BUILD_DATE] table, but it includes only the subset transcriptomic samples. This table is useful for transcribed gene-level analysis of the Cannabis genome.
Fork this kernel to get started with this dataset.
Dataset Source: http://opencannabisproject.org/ Category: Genomics Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://www.ncbi.nlm.nih.gov/home/about/policies.shtml - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset. Update frequency: As additional data are released to GenBank View in BigQuery: https://bigquery.cloud.google.com/dataset/bigquery-public-data:genomics_cannabis View in Google Cloud Storage: gs://gcs-public-data--genomics/cannabis
Banner Photo by Rick Proctor from Unplash.
Which Cannabis samples are included in the variants table?
Which contigs in the MNPR01_reference_[BUILD_DATE] table have the highest density of variants?
How many variants does each sample have at the THC Synthase gene (THCA1) locus?
The COVID-19 Vaccination Access Dataset characterizes access to COVID-19 vaccination sites based on travel times. This dataset is intended to help public health officials, researchers, and healthcare providers to identify areas with insufficient access, deploy interventions, and research these issues—you shouldn’t use this dataset for other purposes. To learn more about the dataset and how we generate it, read the dataset documentation . To visualize the data, try exploring the Vaccine Equity Planner tool by Ariadne Labs and Boston Children’s Hospital , which is powered by this dataset. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery?
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Ethereum Classic is an open-source, public, blockchain-based distributed computing platform featuring smart contract (scripting) functionality. It provides a decentralized Turing-complete virtual machine, the Ethereum Virtual Machine (EVM), which can execute scripts using an international network of public nodes. Ethereum Classic and Ethereum have a value token called "ether", which can be transferred between participants, stored in a cryptocurrency wallet and is used to compensate participant nodes for computations performed in the Ethereum Platform.
Ethereum Classic came into existence when some members of the Ethereum community rejected the DAO hard fork on the grounds of "immutability", the principle that the blockchain cannot be changed, and decided to keep using the unforked version of Ethereum. Till this day, Etherum Classic runs the original Ethereum chain.
In this dataset, you will have access to Ethereum Classic (ETC) historical block data along with transactions and traces. You can access the data from BigQuery in your notebook with bigquery-public-data.crypto_ethereum_classic
dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_ethereum_classic.[TABLENAME]. Fork this kernel to get started.
This dataset wouldn't be possible without the help of Allen Day, Evgeny Medvedev and Yaz Khoury. This dataset uses Blockchain ETL. Special thanks to ETC community member @donsyang for the banner image.
One of the main questions we wanted to answer was the Gini coefficient of ETC data. We also wanted to analyze the DAO Smart Contract before and after the DAO Hack and the resulting Hardfork. We also wanted to analyze the network during the famous 51% attack and see what sort of patterns we can spot about the attacker.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Metropolitan Museum of Art, better known as the Met, provides a public domain dataset with over 200,000 objects including metadata and images. In early 2017, the Met debuted their Open Access policy to make part of their collection freely available for unrestricted use under the Creative Commons Zero designation and their own terms and conditions.
This dataset provides a new view to one of the world’s premier collections of fine art. The data includes both image in Google Cloud Storage, and associated structured data in two BigQuery two tables, objects and images (1:N). Locations to images on both The Met’s website and in Google Cloud Storage are available in the BigQuery table.
Fork this kernel to get started with this dataset.
https://cloud.google.com/blog/big-data/2017/08/images/150177792553261/met03.png" alt="">
https://cloud.google.com/blog/big-data/2017/08/images/150177792553261/met03.png
https://bigquery.cloud.google.com/dataset/bigquery-public-data:the_met
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.metmuseum.org/about-the-met/policies-and-documents/image-resources — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @danieltong from Unplash.
What are the types of art by department?
What are the earliest photographs in the collection?
What was the most prolific period for ancient Egyptian Art?
This dataset contains all stories and comments from Hacker News from its launch in 2006 to present. Each story contains a story ID, the author that made the post, when it was written, and the number of points the story received. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides download statistics for all package downloads from the Python Package Index (PyPI). It also includes a dataset containing all the metadata for every distribution released on PyPI. The data is streamed in near-real-time from PyPI CDN, after which it is periodically loaded into the BigQuery dataset. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
This data from USAFacts provides US COVID-19 case and death counts by state and county. This data is sourced from the CDC, and state and local health agencies.
For more information, see the USAFacts site on the Coronavirus. Interactive data visualizations are also available via USAFacts.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Zcash is a cryptocurrency and distributed ledger system (blockchain) that provides enhanced privacy by including additional cryptographic features relative to Bitcoin. This dataset contains the blockchain data in their entirety, pre-processed to be human-friendly and to support common use cases such as auditing, investigating, and researching the economic and financial properties of the system.
You can access the data from BigQuery in your notebook with bigquery-public-data.crypto_zcash
dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_zcash.[TABLENAME].
This dataset wouldn't be possible without the help of BigQuery and all of their contributions to public data.
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers. Updated on a quarterly basis, this BigQuery dataset includes an archive of Stack Overflow content, including posts, votes, tags, and badges. This dataset is updated to mirror the Stack Overflow content on the Internet Archive, and is also available through the Stack Exchange Data Explorer. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .