Facebook
TwitterThis dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
Twitterhttps://choosealicense.com/licenses/osl-3.0/https://choosealicense.com/licenses/osl-3.0/
Process to Generate DuckDB Dataset
1. Load Repository Metadata
Read repo_metadata.json from GitHub Public Repository Metadata Normalize JSON into three lists: Repositories → general metadata (stars, forks, license, etc.). Languages → repo-language mappings with size. Topics → repo-topic mappings.
Convert lists into Pandas DataFrames: df_repos, df_languages, df_topics.
2. Enhance with BigQuery Data
Create a temporary BigQuery table (repo_list)… See the full description on the dataset page: https://huggingface.co/datasets/deepgit/github_meta.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Labeled datasets are useful in machine learning research.
This public dataset contains approximately 9 million URLs and metadata for images that have been annotated with labels spanning more than 6,000 categories.
Tables: 1) annotations_bbox 2) dict 3) images 4) labels
Update Frequency: Quarterly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:open_images
https://cloud.google.com/bigquery/public-data/openimages
APA-style citation: Google Research (2016). The Open Images dataset [Image urls and labels]. Available from github: https://github.com/openimages/dataset.
Use: The annotations are licensed by Google Inc. under CC BY 4.0 license.
The images referenced in the dataset are listed as having a CC BY 2.0 license. Note: while we tried to identify images that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each image and you should verify the license for each image yourself.
Banner Photo by Mattias Diesel from Unsplash.
Which labels are in the dataset? Which labels have "bus" in their display names? How many images of a trolleybus are in the dataset? What are some landing pages of images with a trolleybus? Which images with cherries are in the training set?
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Certainly! Here's a description for the Kaggle dataset related to the cloud-training-demos.SAP_REPLICATED_DATA BigQuery public dataset:
Dataset ID: cloud-training-demos.SAP_REPLICATED_DATA
Overview:
The SAP_REPLICATED_DATA dataset in BigQuery provides a comprehensive replication of SAP (Systems, Applications, and Products in Data Processing) business data. This dataset is designed to support data analytics and machine learning tasks by offering a rich set of structured data that mimics real-world enterprise scenarios. It includes data from various SAP modules and processes, enabling users to perform in-depth analysis, build predictive models, and explore business insights.
Content: - Tables and Schemas: The dataset consists of multiple tables representing different aspects of SAP business operations, including but not limited to sales, inventory, finance, and procurement data. - Data Types: It contains structured data with fields such as transaction IDs, timestamps, customer details, product information, sales figures, and financial metrics. - Data Volume: The dataset is designed to simulate large-scale enterprise data, making it suitable for performance testing, data processing, and analysis.
Usage: - Business Analytics: Users can analyze business trends, sales performance, and financial metrics. - Machine Learning: Ideal for developing and testing machine learning models related to business forecasting, anomaly detection, and customer segmentation. - Data Processing: Suitable for practicing SQL queries, data transformation, and integration tasks.
Example Use Cases: - Sales Analysis: Track and analyze sales performance across different regions and time periods. - Inventory Management: Monitor inventory levels and identify trends in stock movements. - Financial Reporting: Generate financial reports and analyze expense patterns.
For more information and to access the dataset, visit the BigQuery public datasets page or refer to the dataset documentation in the BigQuery console.
Here's a Markdown table with the information you provided:
| File Name | Description |
|---|---|
| adr6.csv | Addresses with organizational units. Contains address details related to organizational units like departments or branches. |
| adrc.csv | General Address Data. Provides information about addresses, including details such as street, city, and postal codes. |
| adrct.csv | Address Contact Information. Contains contact information linked to addresses, including phone numbers and email addresses. |
| adrt.csv | Address Details. Includes detailed address data such as street addresses, city, and country codes. |
| ankt.csv | Accounting Document Segment. Provides details on segments within accounting documents, including account numbers and amounts. |
| anla.csv | Asset Master Data. Contains information about fixed assets, including asset identification and classification. |
| bkpf.csv | Accounting Document Header. Contains headers of accounting documents, such as document numbers and fiscal year. |
| bseg.csv | Accounting Document Segment. Details line items within accounting documents, including account details and amounts. |
| but000.csv | Business Partners. Contains basic information about business partners, including IDs and names. |
| but020.csv | Business Partner Addresses. Provides address details associated with business partners. |
| cepc.csv | Customer Master Data - Central. Contains centralized data for customer master records. |
| cepct.csv | Customer Master Data - Contact. Provides contact details associated with customer records. |
| csks.csv | Cost Center Master Data. Contains data about cost centers within the organization. |
| cskt.csv | Cost Center Texts. Provides text descriptions and labels for cost centers. |
| dd03l.csv | Data Element Field Labels. Contains labels and descriptions for data fields in the SAP system. |
| ekbe.csv | Purchase Order History. Details history of purchase orders, including quantities and values. |
| ekes.csv | Purchasing Document History. Contains history of purchasing documents including changes and statuses. |
| eket.csv | Purchase Order Item History. Details changes and statuses for individual purchase order items. |
| ekkn.csv | Purchase Order Account Assignment. Provides account assignment details for purchas... |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Bitcoin and other cryptocurrencies have captured the imagination of technologists, financiers, and economists. Digital currencies are only one application of the underlying blockchain technology. Like its predecessor, Bitcoin, the Ethereum blockchain can be described as an immutable distributed ledger. However, creator Vitalik Buterin also extended the set of capabilities by including a virtual machine that can execute arbitrary code stored on the blockchain as smart contracts.
Both Bitcoin and Ethereum are essentially OLTP databases, and provide little in the way of OLAP (analytics) functionality. However the Ethereum dataset is notably distinct from the Bitcoin dataset:
The Ethereum blockchain has as its primary unit of value Ether, while the Bitcoin blockchain has Bitcoin. However, the majority of value transfer on the Ethereum blockchain is composed of so-called tokens. Tokens are created and managed by smart contracts.
Ether value transfers are precise and direct, resembling accounting ledger debits and credits. This is in contrast to the Bitcoin value transfer mechanism, for which it can be difficult to determine the balance of a given wallet address.
Addresses can be not only wallets that hold balances, but can also contain smart contract bytecode that allows the programmatic creation of agreements and automatic triggering of their execution. An aggregate of coordinated smart contracts could be used to build a decentralized autonomous organization.
The Ethereum blockchain data are now available for exploration with BigQuery. All historical data are in the ethereum_blockchain dataset, which updates daily.
Our hope is that by making the data on public blockchain systems more readily available it promotes technological innovation and increases societal benefits.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_ethereum.[TABLENAME]. Fork this kernel to get started.
Cover photo by Thought Catalog on Unsplash
Facebook
TwitterThe Google Trends dataset will provide critical signals that individual users and businesses alike can leverage to make better data-driven decisions. This dataset simplifies the manual interaction with the existing Google Trends UI by automating and exposing anonymized, aggregated, and indexed search data in BigQuery. This dataset includes the Top 25 stories and Top 25 Rising queries from Google Trends. It will be made available as two separate BigQuery tables, with a set of new top terms appended daily. Each set of Top 25 and Top 25 rising expires after 30 days, and will be accompanied by a rolling five-year window of historical data in 210 distinct locations in the United States. This Google dataset is hosted in Google BigQuery as part of Google Cloud's Datasets solution and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Facebook
TwitterStackExchange Dataset
Working doc: https://docs.google.com/document/d/1h585bH5sYcQW4pkHzqWyQqA4ape2Bq6o1Cya0TkMOQc/edit?usp=sharing
BigQuery query (see so_bigquery.ipynb): CREATE TEMP TABLE answers AS SELECT * FROM bigquery-public-data.stackoverflow.posts_answers WHERE LOWER(Body) LIKE '%arxiv%';
CREATE TEMPORARY TABLE questions AS SELECT * FROM bigquery-public-data.stackoverflow.posts_questions;
SELECT * FROM answers JOIN questions ON questions.id = answers.parent_id;
NOTE:… See the full description on the dataset page: https://huggingface.co/datasets/ag2435/stackexchange.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this release you will find data about software distributed and/or crafted publicly on the Internet. You will find information about its development, its distribution and its relationship with other software included as a dependency. You will not find any information about the individuals who create and maintain these projects.
Libraries.io gathers data on open source software from 33 package managers and 3 source code repositories. We track over 2.4m unique open source projects, 25m repositories and 121m interdependencies between them. This gives Libraries.io a unique understanding of open source software.
Fork this kernel to get started with this dataset.
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — https://libraries.io/data — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
https://console.cloud.google.com/marketplace/details/libraries-io/librariesio
Banner Photo by Caspar Rubin from Unplash.
What are the repositories, avg project size, and avg # of stars?
What are the top dependencies per platform?
What are the top unmaintained or deprecated projects?
Facebook
TwitterBitcoin is a crypto currency leveraging blockchain technology to store transactions in a distributed ledger. A blockchain is an ever-growing tree of blocks. Each block contains a number of transactions. To learn more, read the Bitcoin Wiki . This dataset is part of a larger effort to make cryptocurrency data available in BigQuery through the Google Cloud Public Datasets program. The program is hosting several cryptocurrency datasets, with plans to both expand offerings to include additional cryptocurrencies and reduce the latency of updates. You can find these datasets by searching "cryptocurrency" in GCP Marketplace. For analytics interoperability, we designed a unified schema that allows all Bitcoin-like datasets to share queries. To further interoperate with Ethereum and ERC-20 token transactions, we also created some views that abstract the blockchain ledger to be presented as a double-entry accounting ledger. Interested in learning more about how the data from these blockchains were brought into BigQuery? Looking for more ways to analyze the data? Check out our blog post on the Google Cloud Big Data Blog and try the sample query below to get started. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Adapted from Wikipedia: OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world. Created in 2004, it was inspired by the success of Wikipedia and more than two million registered users who can add data by manual survey, GPS devices, aerial photography, and other free sources. We've made available a number of tables (explained in detail below): history_* tables: full history of OSM objects planet_* tables: snapshot of current OSM objects as of Nov 2019 The history_* and planet_* table groups are composed of node, way, relation, and changeset tables. These contain the primary OSM data types and an additional changeset corresponding to OSM edits for convenient access. These objects are encoded using the BigQuery GEOGRAPHY data type so that they can be operated upon with the built-in geography functions to perform geometry and feature selection, additional processing. Example analyses are given below. This dataset is part of a larger effort to make data available in BigQuery through the Google Cloud Public Datasets program . OSM itself is produced as a public good by volunteers, and there are no guarantees about data quality. Interested in learning more about how these data were brought into BigQuery and how you can use them? Check out the sample queries below to get started. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Adapted from Wikipedia: OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world. Created in 2004, it was inspired by the success of Wikipedia and more than two million registered users who can add data by manual survey, GPS devices, aerial photography, and other free sources.
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
This is the OpenStreetMap (OSM) planet-wide dataset loaded to BigQuery.
Tables:
- history_* tables: full history of OSM objects.
- planet_* tables: snapshot of current OSM objects as of Nov 2019.
The history_* and planet_* table groups are composed of node, way, relation, and changeset tables. These contain the primary OSM data types and an additional changeset corresponding to OSM edits for convenient access. These objects are encoded using the BigQuery GEOGRAPHY data type so that they can be operated upon with the built-in geography functions to perform geometry and feature selection, additional processing.
You can read more about OSM elements on the OSM Wiki. This dataset uses BigQuery GEOGRAPHY datatype which supports a set of functions that can be used to analyze geographical data, determine spatial relationships between geographical features, and construct or manipulate GEOGRAPHYs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterUPDATE: The Community Mobility Reports are no longer being updated as of October 15, 2022. All historical data will remain publicly available for research purposes. This dataset aims to provide insights into what has changed in response to policies aimed at combating COVID-19. It reports movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. This dataset is intended to help remediate the impact of COVID-19. It shouldn’t be used for medical diagnostic, prognostic, or treatment purposes. It also isn’t intended to be used for guidance on personal travel plans. To learn more about the dataset, the place categories and how we calculate these trends and preserve privacy, visit our help center or read the data documentation All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterThis dataset and BigQuery Script are the results of the analysis of Bike Share Analysis with BigQuery and Tableau project. I have written here all SQL queries I used for my analysis you can use it to make your own.
Facebook
TwitterLibraries.io gathers data on open source software from 33 package managers and 3 source code repositories. We track over 2.4m unique open source projects, 25m repositories and 121m interdependencies between them. This gives Libraries.io a unique understanding of open source software. In this release you will find data about software distributed and/or crafted publicly on the Internet. You will find information about its development, its distribution and its relationship with other software included as a dependency. You will not find any information about the individuals who create and maintain these projects. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterEthereum is a crypto currency which leverages blockchain technology to store transactions in a distributed ledger. A blockchain is an ever-growing "tree" of blocks, where each block contains a number of transactions. To learn more, read the "Ethereum in BigQuery: a Public Dataset for smart contract analytics" blog post by Google Developer Advocate Allen Day. This dataset is part of a larger effort to make cryptocurrency data available in BigQuery through the Google Cloud Public Datasets program.
Facebook
TwitterEthereum Classic is a cryptocurrency with shared history with the Ethereum cryptocurrency. On technical merits, the two cryptocurrencies are nearly identical, differing only in programming language features supported by the Ethereum Virtual machine which is used to write smart contracts. This dataset contains the blockchain data in their entirety, pre-processed to be human-friendly and to support common use cases such as auditing, investigating, and researching the economic and financial properties of the system. Interested in learning more about how Cloud Public Data is working to make data from blockchains and cryptocurrencies more accessible? Check out our blog post on the Google Cloud Big Data Blog and try the sample query below to get started. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers.
Updated on a quarterly basis, this BigQuery dataset includes an archive of Stack Overflow content, including posts, votes, tags, and badges. This dataset is updated to mirror the Stack Overflow content on the Internet Archive, and is also available through the Stack Exchange Data Explorer.
Fork this kernel to get started with this dataset.
Dataset Source: https://archive.org/download/stackexchange
https://bigquery.cloud.google.com/dataset/bigquery-public-data:stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
Banner Photo by Caspar Rubin from Unplash.
What is the percentage of questions that have been answered over the years?
What is the reputation and badge count of users across different tenures on StackOverflow?
What are 10 of the “easier” gold badges to earn?
Which day of the week has most questions answered within an hour?
Facebook
TwitterIn an effort to help combat COVID-19, we created a COVID-19 Public Datasets program to make data more accessible to researchers, data scientists and analysts. The program will host a repository of public datasets that relate to the COVID-19 crisis and make them free to access and analyze. These include datasets from the New York Times, European Centre for Disease Prevention and Control, Google, Global Health Data from the World Bank, and OpenStreetMap. Free hosting and queries of COVID datasets As with all data in the Google Cloud Public Datasets Program , Google pays for storage of datasets in the program. BigQuery also provides free queries over certain COVID-related datasets to support the response to COVID-19. Queries on COVID datasets will not count against the BigQuery sandbox free tier , where you can query up to 1TB free each month. Limitations and duration Queries of COVID data are free. If, during your analysis, you join COVID datasets with non-COVID datasets, the bytes processed in the non-COVID datasets will be counted against the free tier, then charged accordingly, to prevent abuse. Queries of COVID datasets will remain free until Sept 15, 2021. The contents of these datasets are provided to the public strictly for educational and research purposes only. We are not onboarding or managing PHI or PII data as part of the COVID-19 Public Dataset Program. Google has practices & policies in place to ensure that data is handled in accordance with widely recognized patient privacy and data security policies. See the list of all datasets included in the program
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Analytics Query Accelerator (AQA) market is experiencing robust growth, driven by the increasing demand for real-time insights from massive datasets across various industries. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 20% from 2025 to 2033, reaching an estimated $70 billion by 2033. This expansion is fueled by several key factors. Firstly, the proliferation of big data and the need for rapid data analysis across sectors like finance, healthcare, and e-commerce are creating significant demand. Secondly, advancements in cloud computing and distributed database technologies are enabling faster query processing and improved performance of AQAs. Finally, the rising adoption of advanced analytics techniques such as machine learning and artificial intelligence is further driving the need for efficient query acceleration solutions. Key players like Google, Amazon, Snowflake, Microsoft, Databricks, Teradata, and Cloudera are actively competing in this rapidly evolving landscape, investing heavily in R&D and strategic partnerships to maintain market leadership. The growth trajectory of the AQA market is further shaped by emerging trends such as the increasing adoption of serverless computing and the expansion of edge analytics. However, challenges remain, including the complexity of implementing and managing AQA solutions, the need for skilled professionals, and concerns related to data security and privacy. Despite these restraints, the long-term outlook for the AQA market remains exceptionally positive, fueled by continuous technological innovations and the ever-increasing reliance on data-driven decision-making across all industries. The market segmentation is likely diversified across various deployment models (cloud, on-premise), data types (structured, unstructured), and industry verticals. This diverse landscape presents numerous opportunities for both established players and emerging companies to capture market share.
Facebook
TwitterThis dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .