https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
BigQuery provides a limited number of sample tables that you can run queries against. These tables are suited for testing queries and learning BigQuery.
gsod: Contains weather information collected by NOAA, such as precipitation amounts and wind speeds from late 1929 to early 2010.
github_nested: Contains a timeline of actions such as pull requests and comments on GitHub repositories with a nested schema. Created in September 2012.
github_timeline: Contains a timeline of actions such as pull requests and comments on GitHub repositories with a flat schema. Created in May 2012.
natality: Describes all United States births registered in the 50 States, the District of Columbia, and New York City from 1969 to 2008.
shakespeare: Contains a word index of the works of Shakespeare, giving the number of times each word appears in each corpus.
trigrams: Contains English language trigrams from a sample of works published between 1520 and 2008.
wikipedia: Contains the complete revision history for all Wikipedia articles up to April 2010.
Fork this kernel to get started.
Data Source: https://cloud.google.com/bigquery/sample-tables
Banner Photo by Mervyn Chan from Unplash.
How many babies were born in New York City on Christmas Day?
How many words are in the play Hamlet?
The United States Environmental Protection Agency (EPA) protects both public health and the environment by establishing the standards for national air quality. The EPA provides annual summary data as well as hourly and daily data in the categories of criteria gases, particulates, meteorological, and toxics. These datasets include measurements beginning in 1990 and are updated twice a year. In June, the complete data for the previous year is updated, and in December the summer data is updated. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Auto-generated structured data of Google BigQuery from table Fields
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Google Patents Public Data, provided by IFI CLAIMS Patent Services, is a worldwide bibliographic and US full-text dataset of patent publications. Patent information accessibility is critical for examining new patents, informing public policy decisions, managing corporate investment in intellectual property, and promoting future scientific innovation. The growing number of available patent data sources means researchers often spend more time downloading, parsing, loading, syncing and managing local databases than conducting analysis. With these new datasets, researchers and companies can access the data they need from multiple sources in one place, thus spending more time on analysis than data preparation.
The Google Patents Public Data dataset contains a collection of publicly accessible, connected database tables for empirical analysis of the international patent system.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:patents
For more info, see the documentation at https://developers.google.com/web/tools/chrome-user-experience-report/
“Google Patents Public Data” by IFI CLAIMS Patent Services and Google is licensed under a Creative Commons Attribution 4.0 International License.
Banner photo by Helloquence on Unsplash
This dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers.
Updated on a quarterly basis, this BigQuery dataset includes an archive of Stack Overflow content, including posts, votes, tags, and badges. This dataset is updated to mirror the Stack Overflow content on the Internet Archive, and is also available through the Stack Exchange Data Explorer.
Fork this kernel to get started with this dataset.
Dataset Source: https://archive.org/download/stackexchange
https://bigquery.cloud.google.com/dataset/bigquery-public-data:stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
Banner Photo by Caspar Rubin from Unplash.
What is the percentage of questions that have been answered over the years?
What is the reputation and badge count of users across different tenures on StackOverflow?
What are 10 of the “easier” gold badges to earn?
Which day of the week has most questions answered within an hour?
GitHub Swift Repositories
Dataset Description
Dataset Summary
This dataset comprises data extracted from GitHub repositories, specifically focusing on Swift code. It was extracted using Google BigQuery and contains detailed information such as the repository name, reference, path, and license.
Source Data
Initial Data Collection and Normalization
The data was collected from GitHub repositories using Google BigQuery. The dataset includes data from… See the full description on the dataset page: https://huggingface.co/datasets/drewparo/bigquery-swift-unfiltered.
TheLook is a fictitious eCommerce clothing site developed by the Looker team. The dataset contains information about customers, products, orders, logistics, web events and digital marketing campaigns. The contents of this dataset are synthetic, and are provided to industry practitioners for the purpose of product discovery, testing, and evaluation. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.What is BigQuery .
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This curated dataset consists of 269,353 patent documents (published patent applications and granted patents) spanning the 1976 to 2016 period and is intended to help identify promising R&D on the horizon in diagnostics, therapeutics, data analytics, and model biological systems.
USPTO Cancer Moonshot Patent Data was generated using USPTO examiner tools to execute a series of queries designed to identify cancer-specific patents and patent applications. This includes drugs, diagnostics, cell lines, mouse models, radiation-based devices, surgical devices, image analytics, data analytics, and genomic-based inventions.
“USPTO Cancer Moonshot Patent Data” by the USPTO, for public use. Frumkin, Jesse and Myers, Amanda F., Cancer Moonshot Patent Data (August, 2016).
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:uspto_oce_cancer
The datastore-bigquery extension for CKAN allows users to leverage Google Cloud BigQuery for datastore search and SQL queries, providing an alternative to CKAN's standard datastore. By integrating with BigQuery, this extension aims to enhance performance and scalability for data-intensive operations against data stored as BigQuery tables. This plugin allows CKAN to query data that actually resides in Google BigQuery. Key Features: BigQuery Integration: Enables CKAN's datastore search and datastore SQL API to query data directly from Google BigQuery tables. Alternative to Standard Datastore: Offers BigQuery as a backend option, providing users with flexibility in choosing their data storage and query engine. Credential-Based Authentication: Relies on Google Cloud credentials (JSON file) for secure authentication and authorization to BigQuery resources. Test Suite Comes with a test suite that can be can be run as a standalone instance via pytest or also run as an integrated CKAN plugin via nosetests. Technical Integration: The extension integrates into CKAN as a plugin. You will need to enable it in the .ini configuration file. The extension uses Google Cloud credentials to authenticate and authorize access to BigQuery, enabling seamless data access and querying within the CKAN environment. Benefits & Impact: This extension is valuable for CKAN deployments dealing with big datasets hosted in BigQuery, offering potentially significant performance and scalability benefits compared to CKAN's default datastore implementation. The ability to use BigQuery as the data backend removes dependency / limitations on the CKAN datastore.
The Synthetic Patient Data in OMOP Dataset is a synthetic database released by the Centers for Medicare and Medicaid Services (CMS) Medicare Claims Synthetic Public Use Files (SynPUF). It is synthetic data containing 2008-2010 Medicare insurance claims for development and demonstration purposes. It has been converted to the Observational Medical Outcomes Partnership (OMOP) common data model from its original form, CSV, by the open source community as released on GitHub Please refer to the CMS Linkable 2008–2010 Medicare Data Entrepreneurs’ Synthetic Public Use File (DE-SynPUF) User Manual for details regarding how DE-SynPUF was created." This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers. Updated on a quarterly basis, this BigQuery dataset includes an archive of Stack Overflow content, including posts, votes, tags, and badges. This dataset is updated to mirror the Stack Overflow content on the Internet Archive, and is also available through the Stack Exchange Data Explorer. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
This dataset includes Part 1 crimes (as defined by Uniform Crime Reporting Statistics ) for 2014 and 2015. Data is provided by the Austin Police Department and may differ from official APD crime data due to the variety of reporting and collection methods used. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
The International Google Trends dataset will provide critical signals that individual users and businesses alike can leverage to make better data-driven decisions. This dataset simplifies the manual interaction with the existing Google Trends UI by automating and exposing anonymized, aggregated, and indexed search data in BigQuery. This dataset includes the Top 25 stories and Top 25 Rising queries from Google Trends. It will be made available as two separate BigQuery tables, with a set of new top terms appended daily. Each set of Top 25 and Top 25 rising expires after 30 days, and will be accompanied by a rolling five-year window of historical data for each country and region across the globe, where data is available. This Google dataset is hosted in Google BigQuery as part of Google Cloud's Datasets solution and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COKI Language Dataset contains predictions for 122 million academic publications. The dataset consists of DOI, title, ISO language code and the fastText language prediction probability score.
Methodology
A subset of the COKI Academic Observatory Dataset, which is produced by the Academic Observatory Workflows codebase [1], was extracted and converted to CSV with Bigquery and downloaded to a virtual machine. The subset consists of all publications with DOIs in our dataset, including each publication’s title and abstract from both Crossref Metadata and Microsoft Academic Graph. The CSV files were then processed with a Python script. The titles and abstracts for each record were pre-processed, concatenated together and analysed with fastText. The titles and abstracts from Crossref Metadata were used first, with the MAG titles and abstracts serving as a fallback when the Crossref Metadata information was empty. Language was predicted for each publication using the fastText lid.176.bin language identification model [2]. fastText was chosen because of its high accuracy and fast runtime speed [3]. The final output dataset consists of DOI, title, ISO language code and the fastText language prediction probability score.
Query or Download
The data is publicly accessible in BigQuery in the following two tables:
When you make queries on these tables, make sure that you are in your own Google Cloud project, otherwise the queries will fail.
See the COKI Language Detection README for instructions on how to download the data from Zenodo and load it into BigQuery.
Code
The code that generated this dataset, the BigQuery schemas and instructions for loading the data into BigQuery can be found here: https://github.com/The-Academic-Observatory/coki-language
License
COKI Language Dataset © 2022 by Curtin University is licenced under CC BY 4.0.
Attributions
This work contains information from:
References
[1] https://doi.org/10.5281/zenodo.6366695
[2] https://fasttext.cc/docs/en/language-identification.html
[3] https://modelpredict.com/language-identification-survey
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
These datasets are important to genomics researchers because they characterize several aspects of what the scientific community has learned to date about human sequence variants. Making this human annotation data freely available in GCP will enable researchers to focus less on data movement and management tasks associated with procuring this data and instead make immediate use of the data to better understand the clinical relevance of particular variant such as disease causing or protective variants (ClinVar), search a catalog of SNPs that have been identified in the human genome (dbSNP), and discover how frequently a particular variant occurs across the human population (1000Genomes, ESP, ExAC, gnomAD) This human annotation dataset contains both a mirror of the original Variant Call Files (VCF) files from NCBI, NHLBI Exome Sequencing Project (ESP) and ensembl as Google Cloud Storage (GCS) objects. In addition, these human sequence variants have also been translated into a particular variant table format and made available in Google BigQuery giving researchers the ability to use cloud technology and code repositories such as the Verily Life Sciences Annotation Toolkit to perform analyses in parallel. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . This public dataset is hosted in Google Cloud Storage and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Office Action Research Dataset for Patents contains detailed information derived from the Office actions issued by patent examiners to applicants during the patent examination process. The “Office action” is a written notification to the applicant of the examiner’s decision on patentability and generally discloses the grounds for a rejection, the claims affected, and the pertinent prior art.
This initial release consists of three files derived from 4.4 million Office actions mailed during the 2008 to mid-2017 period from USPTO examiners to the applicants of 2.2 million unique patent applications.
A working paper describing this dataset is available and can be cited as Lu, Qiang and Myers, Amanda F. and Beliveau, Scott, USPTO Patent Prosecution Research Data: Unlocking Office Action Traits (November 20, 2017). USPTO Economic Working Paper No. 2017-10. Available at SSRN: https://ssrn.com/abstract=3024621 (link is external).
This effort is made possible by the USPTO Digital Services & Big Data portfolio and collaboration with the USPTO Office of the Chief Economist (OCE). The OCE provides these data files for public use and encourages users to identify fixes and improvements. Please provide all feedback to: EconomicsData@uspto.gov.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:uspto_oce_office_actions
Banner photo by Trent Erwin on Unsplash
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Open Targets Platform is a comprehensive data integration tool that supports systematic identification and prioritisation of potential therapeutic drug targets. By integrating publicly available datasets including data generated by the Open Targets consortium, the Platform builds and scores target-disease associations to assist in drug target identification and prioritisation. It also integrates relevant annotation information about targets, diseases or phenotypes, variants, GWAS and molQTL studies, credible sets and drugs - as well as their most relevant relationships. The Platform is a freely available resource that is actively maintained with quarterly data updates. Data is available through an intuitive user interface, an API, and data downloads. The pipeline and infrastructure codebases are open-source and the licence allows the creation of self-hosted private instances of the Platform with custom data. To learn more about the Platform, visit our Platform documentation or join the Open Targets Community . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides download statistics for all package downloads from the Python Package Index (PyPI). It also includes a dataset containing all the metadata for every distribution released on PyPI. The data is streamed in near-real-time from PyPI CDN, after which it is periodically loaded into the BigQuery dataset. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
This dataset contains current and historical demographic data on Google's workforce since the company began publishing diversity data in 2014. It includes data collected for government reporting and voluntary employee self-identification globally relating to hiring, retention, and representation categorized by race, gender, sexual orientation, gender identity, disability status, and military status. In some instances, the data is limited due to various government policies around the world and the desire to protect Googler confidentiality. All data in this dataset will be updated yearly upon publication of Google’s Diversity Annual Report . Google uses this data to inform its diversity, equity, and inclusion work. More information on our methodology can be found in the Diversity Annual Report. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
BigQuery provides a limited number of sample tables that you can run queries against. These tables are suited for testing queries and learning BigQuery.
gsod: Contains weather information collected by NOAA, such as precipitation amounts and wind speeds from late 1929 to early 2010.
github_nested: Contains a timeline of actions such as pull requests and comments on GitHub repositories with a nested schema. Created in September 2012.
github_timeline: Contains a timeline of actions such as pull requests and comments on GitHub repositories with a flat schema. Created in May 2012.
natality: Describes all United States births registered in the 50 States, the District of Columbia, and New York City from 1969 to 2008.
shakespeare: Contains a word index of the works of Shakespeare, giving the number of times each word appears in each corpus.
trigrams: Contains English language trigrams from a sample of works published between 1520 and 2008.
wikipedia: Contains the complete revision history for all Wikipedia articles up to April 2010.
Fork this kernel to get started.
Data Source: https://cloud.google.com/bigquery/sample-tables
Banner Photo by Mervyn Chan from Unplash.
How many babies were born in New York City on Christmas Day?
How many words are in the play Hamlet?