This dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
This public dataset was created by the National Oceanic and Atmospheric Administration (NOAA) and includes global data obtained from the USAF Climatology Center. This dataset covers GSOD data between 1929 and present (updated daily), collected from over 9000 stations. Global summary of the day is comprised of a dozen daily averages computed from global hourly station data. Daily weather elements include mean values of: temperature, dew point temperature, sea level pressure, station pressure, visibility, and wind speed plus maximum and minimum temperature, maximum sustained wind speed and maximum gust, precipitation amount, snow depth, and weather indicators. With the exception of U.S. stations, 24-hour periods are based upon UTC times. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Adapted from Wikipedia: OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world. Created in 2004, it was inspired by the success of Wikipedia and more than two million registered users who can add data by manual survey, GPS devices, aerial photography, and other free sources.
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
This is the OpenStreetMap (OSM) planet-wide dataset loaded to BigQuery.
Tables:
- history_*
tables: full history of OSM objects.
- planet_*
tables: snapshot of current OSM objects as of Nov 2019.
The history_*
and planet_*
table groups are composed of node, way, relation, and changeset tables. These contain the primary OSM data types and an additional changeset corresponding to OSM edits for convenient access. These objects are encoded using the BigQuery GEOGRAPHY data type so that they can be operated upon with the built-in geography functions to perform geometry and feature selection, additional processing.
You can read more about OSM elements on the OSM Wiki. This dataset uses BigQuery GEOGRAPHY datatype which supports a set of functions that can be used to analyze geographical data, determine spatial relationships between geographical features, and construct or manipulate GEOGRAPHYs.
This table contains release notes for the majority of generally available Google Cloud products found on cloud.google.com . You can use this BigQuery public dataset to consume release notes programmatically across all products. HTML versions of release notes are available within each product's documentation and also in a filterable format at https://console.cloud.google.com/release-notes . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States
This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.
All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names
https://cloud.google.com/bigquery/public-data/usa-names
Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @dcp from Unplash.
What are the most common names?
What are the most common female names?
Are there more female or male names?
Female names by a wide margin?
In partnership with the Harvard Global Health Institute, Google Cloud is releasing the COVID-19 Public Forecasts to serve as an additional resource for first responders in healthcare, the public sector, and other impacted organizations preparing for what lies ahead. These forecasts are available for free and provide a projection of COVID-19 cases, deaths, and other metrics over the next 14 days for US counties and states. For more info, see https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-is-releasing-the-covid-19-public-forecasts and https://storage.googleapis.com/covid-external/COVID-19ForecastWhitePaper.pdf
A projection of COVID-19 cases, deaths, and other metrics over the next 14 days for US counties and states
Released on BigQuery by Google Cloud:
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
By downloading or using the data, you agree to Google's Terms of Service
This dataset aims to provide insights into what has changed in response to policies aimed at combating COVID-19. It reports movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.
This dataset is intended to help remediate the impact of COVID-19. It shouldn’t be used for medical diagnostic, prognostic, or treatment purposes. It also isn’t intended to be used for guidance on personal travel plans.
To learn more about the dataset, the place categories and how we calculate these trends and preserve privacy, read the data documentation
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.Learn more
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Bitcoin and other cryptocurrencies have captured the imagination of technologists, financiers, and economists. Digital currencies are only one application of the underlying blockchain technology. Like its predecessor, Bitcoin, the Ethereum blockchain can be described as an immutable distributed ledger. However, creator Vitalik Buterin also extended the set of capabilities by including a virtual machine that can execute arbitrary code stored on the blockchain as smart contracts.
Both Bitcoin and Ethereum are essentially OLTP databases, and provide little in the way of OLAP (analytics) functionality. However the Ethereum dataset is notably distinct from the Bitcoin dataset:
The Ethereum blockchain has as its primary unit of value Ether, while the Bitcoin blockchain has Bitcoin. However, the majority of value transfer on the Ethereum blockchain is composed of so-called tokens. Tokens are created and managed by smart contracts.
Ether value transfers are precise and direct, resembling accounting ledger debits and credits. This is in contrast to the Bitcoin value transfer mechanism, for which it can be difficult to determine the balance of a given wallet address.
Addresses can be not only wallets that hold balances, but can also contain smart contract bytecode that allows the programmatic creation of agreements and automatic triggering of their execution. An aggregate of coordinated smart contracts could be used to build a decentralized autonomous organization.
The Ethereum blockchain data are now available for exploration with BigQuery. All historical data are in the ethereum_blockchain dataset
, which updates daily.
Our hope is that by making the data on public blockchain systems more readily available it promotes technological innovation and increases societal benefits.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_ethereum.[TABLENAME]
. Fork this kernel to get started.
Cover photo by Thought Catalog on Unsplash
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a core component of Bitcoin, is a distributed, public ledger recording transactions. Its usage allows secure peer-to-peer communication by linking blocks containing hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a decentralized digital currency (cryptocurrency) which leverages the Blockchain to store transactions in a distributed manner in order to mitigate against flaws in the financial industry.
Nearly ten years after its inception, Bitcoin and other cryptocurrencies experienced an explosion in popular awareness. The value of Bitcoin, on the other hand, has experienced more volatility. Meanwhile, as use cases of Bitcoin and Blockchain grow, mature, and expand, hype and controversy have swirled.
In this dataset, you will have access to information about blockchain blocks and transactions. All historical data are in the bigquery-public-data:crypto_bitcoin
dataset. It’s updated it every 10 minutes. The data can be joined with historical prices in kernels. See available similar datasets here: https://www.kaggle.com/datasets?search=bitcoin.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_bitcoin.[TABLENAME]
. Fork this kernel to get started.
Allen Day (Twitter | Medium), Google Cloud Developer Advocate & Colin Bookman, Google Cloud Customer Engineer retrieve data from the Bitcoin network using a custom client available on GitHub that they built with the bitcoinj
Java library. Historical data from the origin block to 2018-01-31 were loaded in bulk to two BigQuery tables, blocks_raw and transactions. These tables contain fresh data, as they are now appended when new blocks are broadcast to the Bitcoin network. For additional information visit the Google Cloud Big Data and Machine Learning Blog post "Bitcoin in BigQuery: Blockchain analytics on public data".
Photo by Andre Francois on Unsplash.
This dataset contains all stories and comments from Hacker News from its launch in 2006 to present. Each story contains a story ID, the author that made the post, when it was written, and the number of points the story received. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.
This data from USAFacts provides US COVID-19 case and death counts by state and county. This data is sourced from the CDC, and state and local health agencies.
For more information, see the USAFacts site on the Coronavirus. Interactive data visualizations are also available via USAFacts.
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.자세히 알아보기
This dataset contains current and historical demographic data on Google's workforce since the company began publishing diversity data in 2014. It includes data collected for government reporting and voluntary employee self-identification globally relating to hiring, retention, and representation categorized by race, gender, sexual orientation, gender identity, disability status, and military status. In some instances, the data is limited due to various government policies around the world and the desire to protect Googler confidentiality. All data in this dataset will be updated yearly upon publication of Google’s Diversity Annual Report . Google uses this data to inform its diversity, equity, and inclusion work. More information on our methodology can be found in the Diversity Annual Report. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The use of Wikipedia citations in scholarly research has been the topic of much inquiry over the past decade, however little is known regarding perceived Researchers trustworthiness of Wikipedia citations and representation of their work. This cross-publisher study (Taylor & Francis and University of Michigan Press) aimed to investigate author sentiment towards Wikipedia as a source of trusted information.MethodsA short survey was distributed to 40,402 authors of papers cited in Wikipedia (n=21,854 surveys sent, n=750 complete responses received). The survey gathered responses from published authors in relation to their views on Wikipedia’s trustworthiness in relation to the citations to their published works. The unique findings of the survey were analysed using a mix of quantitative and qualitative methods using Python, Google BigQuery and Looker Studio.ResultsOverall, authors expressed positive sentiment towards research citation in Wikipedia and researcher engagement practices (mean scores >7/10). Sub-analyses revealed significant differences in sentiment based on publication type (articles vs. books) and discipline (Humanities and Social Sciences vs. Science, Technology, and Medicine), but not access status (open vs. closed access).ConclusionsThis study provides unique insights into author perceptions of Wikipedia’s trustworthiness. Further research is needed to deepen the understanding of the benefits for researchers and publishers including academic citations in Wikipedia.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates. Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
OpenAQ is an open-source project to surface live, real-time air quality data from around the world. OpenAQ's mission is to enable previously impossible science, impact policy, and empower the public to fight air pollution. The data includes air quality measurements from 5490 locations in 47 countries. Scientists, researchers, developers, and citizens can use this data to understand current air quality near them. The dataset only includes the most current measurement available for the location (no historical data). This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
The Metropolitan Museum of Art, better known as the Met, provides a public domain dataset with over 200,000 objects including metadata and images. In early 2017, the Met debuted their Open Access policy to make part of their collection freely available for unrestricted use under the Creative Commons Zero designation and their own terms and conditions. This dataset provides a new view to one of the world’s premier collections of fine art. The data includes both image in Google Cloud Storage, and associated structured data in two BigQuery two tables, objects and images (1:N). Locations to images on both The Met’s website and in Google Cloud Storage are available in the BigQuery table. The meta data for this public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . The image data for this public dataset is hosted in Google Cloud Storage and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PATCIT: A Comprehensive Dataset of Patent Citations [Website, Newsletter, GitHub]
Patents are at the crossroads of many innovation nodes: science, industry, products, competition, etc. Such interactions can be identified through citations in a broad sense.
It is now common to use front-page patent citations to study some aspects of the innovation system. However, there is much more buried in the Non Patent Literature (NPL) citations and in the patent text itself.
Good news: Natural Language Processing (NLP) tools now enable social scientists to excavate and structure this long hidden information. That's the purpose of this project
IN PRACTICE
A detailed presentation of the current state of the project is available in our March 2020 presentation.
So far, we have:
parsed and consolidated the 27 million NPL citations classified as bibliographical references.
extracted, parsed and consolidated in-text bibliographical references and patent citations from the body of all time USPTO patents.
The latest version of the dataset is the v0.15. It is made of the v0.1 of the US contextual citations dataset and v0.2 of the front-page NPL citations dataset.
Give it a try! The dataset is publicly available on Google Cloud BigQuery, just click here.
FEATURES
Open
Comprehensive
Highest standards
This dataset contains two tables: creative_stats and removed_creative_stats. The creative_stats table contains information about advertisers that served ads in the European Economic Area or Turkey: their legal name, verification status, disclosed name, and location. It also includes ad specific information: impression ranges per region (including aggregate impressions for the European Economic Area), first shown and last shown dates, which criteria were used in audience selection, the format of the ad, the ad topic and whether the ad is funded by Google Ad Grants program. A link to the ad in the Google Ads Transparency Center is also provided. The removed_creative_stats table contains information about ads that served in the European Economic Area that Google removed: where and why they were removed and per-region information on when they served. The removed_creative_stats table also contains a link to the Google Ads Transparency Center for the removed ad. Data for both tables updates periodically and may be delayed from what appears on the Google Ads Transparency Center website. About BigQuery This data is hosted in Google BigQuery for users to easily query using SQL. Note that to use BigQuery, users must have a Google account and create a GCP project. This public dataset is included in BigQuery's 1TB/mo of free tier processing. Each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery . Download Dataset This public dataset is also hosted in Google Cloud Storage here and available free to use. Use this quick start guide to quickly learn how to access public datasets on Google Cloud Storage. We provide the raw data in JSON format, sharded across multiple files to support easier download of the large dataset. A README file which describes the data structure and our Terms of Service (also listed below) is included with the dataset. You can also download the results from a custom query. See here for options and instructions. Signed out users can download the full dataset by using the gCloud CLI. Follow the instructions here to download and install the gCloud CLI. To remove the login requirement, run "$ gcloud config set auth/disable_credentials True" To download the dataset, run "$ gcloud storage cp gs://ads-transparency-center/* . -R" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .