4 datasets found
  1. Global Pasture Watch - Grassland reference samples based on visual...

    • zenodo.org
    bin, pdf, png
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leandro Parente; Leandro Parente; Vinicius Mesquita; Vinicius Mesquita; Ana Paula Mattos; Ana Paula Mattos; Nathália Teles; Nathália Teles; Ichsani Wheeler; Ichsani Wheeler; Tomislav Hengl; Tomislav Hengl; Laerte Ferreira; Laerte Ferreira; Lindsey Sloat; Lindsey Sloat (2025). Global Pasture Watch - Grassland reference samples based on visual interpretation of VHR imagery and harmonized datasets (2000–2024) [Dataset]. http://doi.org/10.5281/zenodo.15631655
    Explore at:
    bin, png, pdfAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Leandro Parente; Leandro Parente; Vinicius Mesquita; Vinicius Mesquita; Ana Paula Mattos; Ana Paula Mattos; Nathália Teles; Nathália Teles; Ichsani Wheeler; Ichsani Wheeler; Tomislav Hengl; Tomislav Hengl; Laerte Ferreira; Laerte Ferreira; Lindsey Sloat; Lindsey Sloat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reference point samples used in the production of the global maps of annual grassland class and extent for 2000—2022 within the scope of the Global Pasture Wath initiative.

    The reference samples (estabilished by Feature Space Coverage Sampling-FSCS) comprises 2.3M points visually classified (using Very High Resolution imagery) in:

    1. Cultivated grassland,
    2. Natural/semi-natural grassland
    3. Other land cover

    The file gpw_grassland_fscs.vi.vhr_tile.samples_20000101_20241231_go_epsg.4326_v2.gpkg aggregates the samples by visual interpretation units ( 1x1 km) and includes the follow collumns:

    • cluster_id: Cluster id defined by k-means (FSCS),
    • cluster_distance: Distance from the sample tile to center of the cluster (FSCS),
    • cluster_size: Size of cluster (strata) defined by the FSCS,
    • priority: Priority used by the visual interpretation,
    • tile_id: Sample tile id,
    • imagery: VHR reference images used by the visual interpretation,
    • min_year: Minimum of year covered by the reference samples,
    • max_year: Maximum of year covered by the reference samples,
    • n_years: Number of years covered by the reference samples,
    • n_samples_c1: Number of reference samples for "Cultivated grass" (1),
    • n_samples_c2: Number of reference samples for "Natural / Semi-natural grass" (2),
    • n_samples_c3: Number of reference samples for "Open Shrubland" (2),
    • n_samples_c4: Number of reference samples for "Not grass" (3),
    • n_samples_all: Total number of reference samples,

    The file gpw_grassland_fscs.vi.vhr_point.samples_20000101_20241231_go_epsg.4326_v2.gpkg provides individual points (with 60-m spatial support) and include the follow collumns:

    • sample_id: Sample id deribed by MD5 Hash of columns x, y, imagery and year,
    • x: Longitude in WGS84 (EPSG:4326),
    • y: Latitude in WGS84 (EPSG:4326),
    • vi_tile_id: 1-km tile id,
    • tile_id: GLAD tile id (1x1 degree)
    • imagery: VHR Reference image used by the visual interpretation (Google; Bing; Interpolated),
    • ref_date: Reference date of GPW samples (based on VHR image) and of other existing datasets,
    • year: Reference year of GPW samples (based on VHR image) and of other existing datasets,
    • class: Class id (1: Cultivated grassland; 2: Natural/semi-natural grassland; 3: Open shrubland; 4: Other land cover) ,
    • class_label: Class labels (Cultivated grassland; Natural/semi-natural grassland; Open shrubland; Other land cover) ,
    • dataset_name: Existing dataset names (CGLS-LC, EuroCrops, GeoWiki, GeoWiki-feedback, LCMap-Conus, LUCAS, MapBiomas, WorldCereal, GPW)
      dataset_class: Original land cover class provided by the maintainer of existing dataset
    • esa_worldcover_2020: Land cover class labels extracted from ESA WorldCover 2020,
    • glad_glcluc_yyyy: Land cover class labels extracted from UMD GLAD GLCLUC for the reference date,
    • glc_fcs30d_yyyy: Land cover class labels extracted from GLC_FCS30D for the reference date,
    • gpw_fscs_cluster: K-Means output ranging from 0—9999 according to Feature Space Coverage Sampling (FSCS),
    • ml_cv_group: spatial block CV group (based on vi_tile_id),
    • ml_type: specify if the sample was used for (1) training or (2) calibration.

    The file gpw_grassland_fscs.vi.vhr_grid.samples_20000101_20241231_go_epsg.4326_v2.gpkg provides the grid samples (with 10-m spatial support) and include the follow collumns:

    • tile_id: 1-km tile id,
    • bing_class: Class labels (Cultivated grassland; Natural/semi-natural grassland; Other land cover) defined using as reference Bing Maps Images,
    • bing_image_start_date: Start date of the Bing Maps Images used in the visual interpretation,
    • bing_image_end_date: End date of the Bing Maps Images used in the visual interpretation,
    • google_class: Class labels (Cultivated grassland; Natural/semi-natural grassland; Other land cover) defined using as reference Google Maps Images,
    • google_image_start_date: Start date of the Google Maps Images used in the visual interpretation,
    • google_image_end_date: End date of the Google Maps Images used in the visual interpretation,
    • missing_image_date: No images available,
    • same_image_bing_google: Images from the same date available in Google and Bing Maps.

    The dataset was produced through the QGIS plugin Fast Grid Inspection.

    Related resources

    Support

    For questions of bugs/inconsistencies related to the dataset raise a GitHub issue in https://github.com/wri/global-pasture-watch

  2. Orthofoto Österreich

    • data.gv.at
    • cloud.csiss.gmu.edu
    • +2more
    Updated Mar 4, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gv.at (2015). Orthofoto Österreich [Dataset]. https://www.data.gv.at/katalog/dataset/orthofoto
    Explore at:
    Dataset updated
    Mar 4, 2015
    Dataset provided by
    Open Data, Austria
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    Orthofoto Österreich ist ein Orthofotodienst von geoland.at, der im Rahmen von basemap.at als Web Map Tile Service angeboten wird. Es handelt sich um einen vorgenerierten Kachel-Cache, in der Web Mercator Auxiliary Sphere und damit kompatibel zu den gängigen weltweiten Basiskarten wie beispielsweise jenen von OpenStreetMap, Google Maps und Bing Maps. Bitte beachten Sie die Nutzungsbedingungen/Namensnennung, siehe weiterführende Metadaten.

  3. f

    GTN XPress Pipeline Shapefile

    • figshare.com
    zip
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claire Richards; Cullen Smith; Paul Sieracki (2024). GTN XPress Pipeline Shapefile [Dataset]. http://doi.org/10.6084/m9.figshare.27057976.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    figshare
    Authors
    Claire Richards; Cullen Smith; Paul Sieracki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    National Pipeline Mapping System: https://pvnpms.phmsa.dot.gov/PublicViewer/TC Energy PDF Map: https://www.tcenergy.com/siteassets/pdfs/natural-gas/gtnxp/tce-gas-transmission-northwest-xpress-map.pdfCompressor data HIFLD (https://ft.maps.arcgis.com/home/item.html?id=d910e5aca7434d19899b1e5a05234051)USGS Topo Maps: https://ngmdb.usgs.gov/topoview/viewer/#4/40.00/-100.00Aerial Imagery:Historical - Google Earth Pro (using the time slider to check for ground scars over the years)Bing Satellite Imagery QGIS Plugin

  4. Z

    Banco de dados da cheia do Rio Taquari-Antas de 2023

    • data.niaid.nih.gov
    Updated Jul 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruhoff, Anderson (2024). Banco de dados da cheia do Rio Taquari-Antas de 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8368530
    Explore at:
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Possantti, Iporã
    Collischonn, Walter
    Michel, Gean Paulo
    Eckhardt, Rafael Rodrigo
    Fan, Fernando
    Marques, Guilherme
    Moraes, Sofia Royer
    Ruhoff, Anderson
    Paiva, Rodrigo
    Zanandrea, Franciele
    Kobiyama, Masato
    Laipelt, Leonardo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Taquari River
    Description

    Este é o repositório do banco de dados da cheia do Rio Taquari-Antas em 4 e 5 de Setembro de 2023. Acessar Documentação Técnica O repositório está em constante atualização, observar a versão mais recente. O banco de dados inclui camadas vetoriais e raster, ambas em formato geopackage. Para abrir, é preciso instalar o software QGIS (Download QGIS). Observação: este banco de dados inclui as edificações Bing Maps do Vale do Rio Taquari-Antas. Arquivos disponíveis: taquari_bd.gpkg: Banco de dados em geopackage, incluindo projeto para manejo no QGIS dicionario_de_camadas_taquari_bd.csv: Tabela em CSV com a lista de camadas, fonte e descrição cartas_taquari_2023.pdf: Documento PDF com exemplares de cartas temáticas sobre a enchente extraordinária de 2023. nt_iph_hge_2023-09-16.pdf: Documento PDF da Nota Técnica IPH/HGE de 16/09/2023 nt_iph_gpden_2023-09-17.pdf: Documento PDF da Nota Técnica IPH/GPDEN de 17/09/2023 nt_iph_gespla_2023-09-19.pdf: Documento PDF da Nota Técnica IPH/GESPLA de 19/09/2023 nt_iph_univates_2023-11-17.pdf: Documento PDF da Nota Técnica IPH/UNIVATES de 17/11/2023 nt_iph_gespla_2023-12-11.pdf: Documento PDF da Nota Técnica IPH/GESPLA de 11/12/2023

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Leandro Parente; Leandro Parente; Vinicius Mesquita; Vinicius Mesquita; Ana Paula Mattos; Ana Paula Mattos; Nathália Teles; Nathália Teles; Ichsani Wheeler; Ichsani Wheeler; Tomislav Hengl; Tomislav Hengl; Laerte Ferreira; Laerte Ferreira; Lindsey Sloat; Lindsey Sloat (2025). Global Pasture Watch - Grassland reference samples based on visual interpretation of VHR imagery and harmonized datasets (2000–2024) [Dataset]. http://doi.org/10.5281/zenodo.15631655
Organization logo

Global Pasture Watch - Grassland reference samples based on visual interpretation of VHR imagery and harmonized datasets (2000–2024)

Explore at:
bin, png, pdfAvailable download formats
Dataset updated
Jun 24, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Leandro Parente; Leandro Parente; Vinicius Mesquita; Vinicius Mesquita; Ana Paula Mattos; Ana Paula Mattos; Nathália Teles; Nathália Teles; Ichsani Wheeler; Ichsani Wheeler; Tomislav Hengl; Tomislav Hengl; Laerte Ferreira; Laerte Ferreira; Lindsey Sloat; Lindsey Sloat
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Reference point samples used in the production of the global maps of annual grassland class and extent for 2000—2022 within the scope of the Global Pasture Wath initiative.

The reference samples (estabilished by Feature Space Coverage Sampling-FSCS) comprises 2.3M points visually classified (using Very High Resolution imagery) in:

  1. Cultivated grassland,
  2. Natural/semi-natural grassland
  3. Other land cover

The file gpw_grassland_fscs.vi.vhr_tile.samples_20000101_20241231_go_epsg.4326_v2.gpkg aggregates the samples by visual interpretation units ( 1x1 km) and includes the follow collumns:

  • cluster_id: Cluster id defined by k-means (FSCS),
  • cluster_distance: Distance from the sample tile to center of the cluster (FSCS),
  • cluster_size: Size of cluster (strata) defined by the FSCS,
  • priority: Priority used by the visual interpretation,
  • tile_id: Sample tile id,
  • imagery: VHR reference images used by the visual interpretation,
  • min_year: Minimum of year covered by the reference samples,
  • max_year: Maximum of year covered by the reference samples,
  • n_years: Number of years covered by the reference samples,
  • n_samples_c1: Number of reference samples for "Cultivated grass" (1),
  • n_samples_c2: Number of reference samples for "Natural / Semi-natural grass" (2),
  • n_samples_c3: Number of reference samples for "Open Shrubland" (2),
  • n_samples_c4: Number of reference samples for "Not grass" (3),
  • n_samples_all: Total number of reference samples,

The file gpw_grassland_fscs.vi.vhr_point.samples_20000101_20241231_go_epsg.4326_v2.gpkg provides individual points (with 60-m spatial support) and include the follow collumns:

  • sample_id: Sample id deribed by MD5 Hash of columns x, y, imagery and year,
  • x: Longitude in WGS84 (EPSG:4326),
  • y: Latitude in WGS84 (EPSG:4326),
  • vi_tile_id: 1-km tile id,
  • tile_id: GLAD tile id (1x1 degree)
  • imagery: VHR Reference image used by the visual interpretation (Google; Bing; Interpolated),
  • ref_date: Reference date of GPW samples (based on VHR image) and of other existing datasets,
  • year: Reference year of GPW samples (based on VHR image) and of other existing datasets,
  • class: Class id (1: Cultivated grassland; 2: Natural/semi-natural grassland; 3: Open shrubland; 4: Other land cover) ,
  • class_label: Class labels (Cultivated grassland; Natural/semi-natural grassland; Open shrubland; Other land cover) ,
  • dataset_name: Existing dataset names (CGLS-LC, EuroCrops, GeoWiki, GeoWiki-feedback, LCMap-Conus, LUCAS, MapBiomas, WorldCereal, GPW)
    dataset_class: Original land cover class provided by the maintainer of existing dataset
  • esa_worldcover_2020: Land cover class labels extracted from ESA WorldCover 2020,
  • glad_glcluc_yyyy: Land cover class labels extracted from UMD GLAD GLCLUC for the reference date,
  • glc_fcs30d_yyyy: Land cover class labels extracted from GLC_FCS30D for the reference date,
  • gpw_fscs_cluster: K-Means output ranging from 0—9999 according to Feature Space Coverage Sampling (FSCS),
  • ml_cv_group: spatial block CV group (based on vi_tile_id),
  • ml_type: specify if the sample was used for (1) training or (2) calibration.

The file gpw_grassland_fscs.vi.vhr_grid.samples_20000101_20241231_go_epsg.4326_v2.gpkg provides the grid samples (with 10-m spatial support) and include the follow collumns:

  • tile_id: 1-km tile id,
  • bing_class: Class labels (Cultivated grassland; Natural/semi-natural grassland; Other land cover) defined using as reference Bing Maps Images,
  • bing_image_start_date: Start date of the Bing Maps Images used in the visual interpretation,
  • bing_image_end_date: End date of the Bing Maps Images used in the visual interpretation,
  • google_class: Class labels (Cultivated grassland; Natural/semi-natural grassland; Other land cover) defined using as reference Google Maps Images,
  • google_image_start_date: Start date of the Google Maps Images used in the visual interpretation,
  • google_image_end_date: End date of the Google Maps Images used in the visual interpretation,
  • missing_image_date: No images available,
  • same_image_bing_google: Images from the same date available in Google and Bing Maps.

The dataset was produced through the QGIS plugin Fast Grid Inspection.

Related resources

Support

For questions of bugs/inconsistencies related to the dataset raise a GitHub issue in https://github.com/wri/global-pasture-watch

Search
Clear search
Close search
Google apps
Main menu