66 datasets found
  1. Bioclimate Projections: (07) Temperature Annual Range

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • climate-change-esricanada.hub.arcgis.com
    • +3more
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (07) Temperature Annual Range [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/808cfb3ab1614f8ab7e364de737e9e98
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of temperature variation over an entire year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  2. SWECO25: Bioclimatic (bioclim)

    • zenodo.org
    bin, csv, xml, zip
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan Külling; Nathan Külling; Antoine Adde; Antoine Adde (2023). SWECO25: Bioclimatic (bioclim) [Dataset]. http://doi.org/10.5281/zenodo.7978760
    Explore at:
    xml, csv, bin, zipAvailable download formats
    Dataset updated
    Dec 22, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nathan Külling; Nathan Külling; Antoine Adde; Antoine Adde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Bioclimatic category (SWECO25 v1.0.0) contains the "chclim25" dataset.

    The chclim25 dataset (bioclimatic category) describes the past, current, and future climate of Switzerland. After resampling the “CHclim25: A high spatial and temporal resolution climate dataset for Switzerland” source data (Broennimann et al., 2021) to the SWECO25 grid, we generated individual precipitation and temperature (min, max, mean) layers at a yearly time step over the 1981-2017 period. In addition, we generated 30-y average climate normal (1981-2010) layers for 28 climate parameters. Layers for the same 28 parameters were also generated for three future periods (2020-2049, 2045-2070, 2070-2099) computed by using their average values projected from for four global climate models (HADGEM, ECEARTH, MPIESM, and IPSL) under three greenhouse gas concentration trajectories or representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5. This dataset includes a total of 428 layers. Final values were rounded and multiplied by 100.

    The detailed list of layers available is provided in SWECO25_datalayers_details_bioclim.csv and includes information on the category, dataset, variable name (long), variable name (short), period, sub-period, start year, end year, attribute, radii, unit, and path.

    References:

    Broennimann, O. CHclim25: A high spatial and temporal resolution climate dataset for Switzerland. (Lausanne, Switzerland, 2021).

  3. Z

    Mean NDVI Values (1982-2018) and Future Predictions Using CHELSA Bioclim...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Avcıoğlu, Aydoğan (2024). Mean NDVI Values (1982-2018) and Future Predictions Using CHELSA Bioclim Variables for Türkiye [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13147272
    Explore at:
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Avcıoğlu, Aydoğan
    Demir, Ogün
    Çıngay, Burçin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Türkiye
    Description

    This dataset contains mean Normalized Difference Vegetation Index (NDVI) values from 1982 to 2018 and their future predictions based on CHELSA bioclimatic variables, specifically for the region of Türkiye. The data is provided in .asc format and includes both historical and projected NDVI values under different climate scenarios.

    Contents:

    Historical NDVI Data (1982-2018): Mean NDVI values derived from remote sensing data.

    Future NDVI Predictions: NDVI projections for the periods 2011-2040, 2041-2070, and 2071-2100 under three Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP3-7.0, and SSP5-8.5.

    Methodology:

    Model Training:

    A Random Forest Regressor was used to model the relationship between NDVI and the selected bioclim variables.

    The model achieved an R² of 0.9341, Mean Absolute Error of 0.0275, and Root Mean Squared Error of 0.0499.

    Future Predictions:

    Future NDVI values were predicted using the trained model and future CHELSA bioclim projections.

    Predictions were made for three future periods (2011-2040, 2041-2070, 2071-2100) under three SSPs (SSP1-2.6, SSP3-7.0, SSP5-8.5).

    Data Specifications:

    Extent: Covers the geographical area of Türkiye and adjacents.

    Sources:

    NDVI Data:

    Ma, Z., Dong, C., Lin, K., Yan, Y., Luo, J., Jiang, D., & Chen, X. (2022). A Global 250-m Downscaled NDVI Product from 1982 to 2018. Remote Sensing, 14(15), 3639.

    CHELSA Bioclim Data:

    Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017). Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4

  4. Bioclimate Projections: (17) Precipitation of Driest Quarter

    • climate.esri.ca
    • ai-climate-hackathon-global-community.hub.arcgis.com
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (17) Precipitation of Driest Quarter [Dataset]. https://climate.esri.ca/maps/86fe2a87fe9144f9a5c330a3b5890df0
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of total precipitation during the three driest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection:  GCS WGS84Extent:  GlobalSource:  WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica. Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  5. Data from: High-resolution future climate data for species distribution...

    • zenodo.org
    csv
    Updated May 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rozemien De Troch; Rozemien De Troch; Piet Termonia; Piet Termonia; Bert Van Schaeybroeck; Bert Van Schaeybroeck (2020). High-resolution future climate data for species distribution models in Europe [Dataset]. http://doi.org/10.5281/zenodo.3694065
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 1, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rozemien De Troch; Rozemien De Troch; Piet Termonia; Piet Termonia; Bert Van Schaeybroeck; Bert Van Schaeybroeck
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Description

    This dataset contains a set of 13 climatological variables (Variable, VariableName) at a spatial resolution of 1x1km for Europe (nx = 13147, ny = 6071) for historical (ClimatePeriod) and future climate conditions. These variables are a subset of the so-called bioclimatic variables that are often part of global gridded datasets (e.g. WorldClim, CHELSA) that have been specifically developed for species distribution modelling and ecological applications.

    The climatological data correspond to 35-year (Startyear_Endyear = 1971_2005) and 30-year (Startyear_Endyear = 2041_2070) mean values representing respectively historical and future climate conditions. To account for the future climate conditions, three possible emission scenarios of greenhouse gases as defined by the Intergovernmental Panel on Climate Change (IPCC) are used (ClimatePeriod = rcp26, rcp45, rcp85).

    The complete set of variables (var[1-13]) for which historical and future climate data layers are produced are given below.

    The source data for the climate layers were assembled from the EURO-CORDEX archive (Kotlarski et al., 2014). More specifically, we have used the regional climate model simulations for Europe at a spatial resolution of 12.5x12.5km on which a three-step statistical downscaling approach has been applied:

    1. Processing (averaging, totals, …) of all available time series of the EURO-CORDEX model experiments (ClimatePeriod = evaluation, historical, rcp) for the climatological variables.
    2. Interpolation of the data layers from the 12.5x12.5km EURO-CORDEX grid to a 1x1km spatial CHELSA (Karger et al., 2017) reference grid (see files lat_1km.csv and lon_1km.csv).
    3. Calculate differences between the 1x1km-interpolated variables (Variable = only for var[1-9]) from the evaluation model experiments (or ClimatePeriod) and the corresponding reference bioclimatic CHELSA variables. In order to account for possible biases present in the EURO-CORDEX climate models, these differences (or biases) are then subtracted from the respective 1x1-km-interpolated variables for the historical and rcp model experiments (ClimatePeriod).

    The dimensions of the 1x1km grid (excl. the first row and column):

    • y-dimension = number of columns = 6071
    • x-dimension = number of rows = 13147

    The longitudes and latitudes of respectively the southwest and northeast corner of the grid are:

    • longitude -44.592; latitude 21.991 (southwest corner)
    • longitude 64.967; latitude 72.583 (northeast corner)

    The climatological variables are used as input data for the species distribution modelling of Invasive Alien Species for the Tracking Invasive Alien Species (TrIAS) project.

    Variables

    • Variable (VariableName): Unit
    • var1 (AnnualMeanTemperature): °C
    • var2 (AnnualAmountPrecipitation): mm year-1
    • var3 (AnnualVariationPrecipitation): coefficient of variation
    • var4 (AnnualVariationTemperature): stdev
    • var5 (MaximumTemperatureWarmestMonth): °C
    • var6 (MinimumTemperatureColdestMonth): °C
    • var7 (TemperatureAnnualRange): °C
    • var8 (PrecipitationWettestMonth): mm
    • var9 (PrecipitationDriestMonth): mm
    • var10 (30yrMeanAnnualCumulatedGDDAbove5degreesC): °C days
    • var11 (AnnualMeanPotentialEvapotranspiration): mm day-1
    • var12 (AnnualMeanSolarRadiation): W m-2
    • var13 (AnnualVariationSolarRadiation): stdev

    Files

    • varX_VariableName_ClimatePeriod_Startyear_Endyear.csv: climatological data layers for the 13 variables listed above
    • lon_1km.csv: longitudes for the 1x1km grid
    • lat_1km.csv: latitudes for the 1x1km grid
  6. a

    Bioclimate Projections Precipitation Seasonality

    • morven-sustainability-lab-uvalibrary.hub.arcgis.com
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Virginia (2025). Bioclimate Projections Precipitation Seasonality [Dataset]. https://morven-sustainability-lab-uvalibrary.hub.arcgis.com/datasets/bioclimate-projections-precipitation-seasonality
    Explore at:
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    University of Virginia
    Area covered
    Earth
    Description

    This layer represents CMIP6 future projections of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) and is expressed as a percentage. The larger the percentage, the greater the variability of precipitation. In some regions the CV values exceed 100%. These regions, such as deserts, may have such little rainfall that any variation creates an extreme percentage. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 BioclimateClimate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.

  7. Bioclimate Projections: (19) Precipitation of Coldest Quarter

    • climate.esri.ca
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (19) Precipitation of Coldest Quarter [Dataset]. https://climate.esri.ca/maps/ec067623611d40d086193b21a3a4fce1
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer represents CMIP6 future projections of total precipitation during the three coldest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal Range Bioclimate 3 Isothermality Bioclimate 4 Temperature Seasonality Bioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual Range Bioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation Seasonality Bioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  8. Bioclimate Projections: (01) Annual Mean Temperature

    • datalibrary-lnr.hub.arcgis.com
    • pacificgeoportal.com
    • +5more
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (01) Annual Mean Temperature [Dataset]. https://datalibrary-lnr.hub.arcgis.com/items/fdaa1b7912e440efb9e29cf5d6156bb0
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of mean annual temperature. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size:  2.5 minutes (~5 km)Source Type:  StretchedPixel Type:  32 Bit FloatData Projection:  GCS WGS84Mosaic Projection:  GCS WGS84Extent:  GlobalSource:  WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica. Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  9. Bioclimate Projections: (15) Precipitation Seasonality

    • pacificgeoportal.com
    • climat.esri.ca
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (15) Precipitation Seasonality [Dataset]. https://www.pacificgeoportal.com/maps/33558b5fef8642338f33918d498f41cf
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) and is expressed as a percentage. The larger the percentage, the greater the variability of precipitation. In some regions the CV values exceed 100%. These regions, such as deserts, may have such little rainfall that any variation creates an extreme percentage. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica. Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  10. S

    Future Global Aridity Index and PET Database (CMIP_6)

    • scidb.cn
    Updated Jan 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert John Zomer; Antonio Trabucco (2024). Future Global Aridity Index and PET Database (CMIP_6) [Dataset]. http://doi.org/10.57760/sciencedb.nbsdc.00086
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Robert John Zomer; Antonio Trabucco
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global Aridity Index and Potential Evapotranspiration Database: CMIP_6 Future Projections(Future_Global_AI_PET)Robert J. Zomer 1, 2, 3, Antonio Trabucco1,41. Euro-Mediterranean Center on Climate Change, IAFES Division, Sassari, Italy. 2. Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China3. CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, Yunnan. China4. National Biodiversity Future Center (NBFC), Palermo, ItalyThe Global Aridity Index and Potential Evapotranspiration (Global AI-PET) Database: CMIP_6 Future Projections – Version 1 (Future_Global_AI_PET) provides a high-resolution (30 arc-seconds) global raster dataset of average monthly and annual potential evapotransipation (PET) and aridity index (AI) for two historical (1960-1990; 1970-2000) and two future (2021-2040; 2041-2060) time periods for each of 22 CMIP6 Earth System Models across four emission scenarios (SSP: 126, 245, 370, 585). The database also includes three averaged multi-model ensembles produced for each of the four emission scenarios:· All Models: includes all of the 22 ESM, as available within a particular SSP.· High Risk: includes 5 ESM identified as projecting the highest increases in temperature and precipitation and lying outside and significantly higher than the majority of estimates.· Majority Consensus: includes 15 ESM, that is, all available ESM excluding the ESM in the “High Risk” category, and those missing data across all of the 4 SSP. Further herein referred to as the “Consensus” category.These geo-spatial datasets have been produced with the support of Euro-Mediterranean Center on Climate Change, IAFES Division; Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Science; CIFOR-ICRAF China Program, World Agroforestry (CIFOR-ICRAF) and the National Biodiversity Future Center (NBFC).These datasets are provided under a CC_BY 4.0 License (please attribute), in standard GeoTiff format, WGS84 Geographic Coordinate System, 30 arc seconds or ~ 1km at the equator, to support studies contributing to sustainable development, biodiversity and environmental conservation, poverty alleviation, and adaption to climate change, among other global, regional, national, and local concerns.The Future_Global_AI_PET is available online from the Science Data Bank (ScienceDB) at: https://doi.org/10.57760/sciencedb.nbsdc.00086Previous versions of the Global Aridity Index and PET Database are available online here:https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_ET0_Climate_Database_v2/7504448/6Technical questions regarding the datasets can be directed to Robert Zomer: r.zomer@mac.com or Antonio Trabucco: antonio.trabucco@cmcc.it Methods:Based on the results of comparative validations, the Hargreaves model has been evaluated as one of the best fit to model PET and Aridity index globally with the available high resolution downscaled and bias corrected climate projections and chosen for the implementation of the Global-AI_PET- CMIP6 Future Projections. This method performs almost as well as the Penman-Monteith method, but requires less parameterization, and has significantly lower sensitivity to error in climatic inputs (Hargreaves and Allen, 2003). The currently available downscaled CMIP6 projections (available from WorldClim) do provide fewer climate variables idoneous for implementation of temperature-based evapotranspiration methods, such as the Hargreaves method. Hargreaves (1985, 1994) uses mean monthly temperature (Tmean), mean monthly temperature range (TD) and extraterrestrial radiation (RA, radiation on top of the atmosphere) to calculate ET0, as shown below: PET = 0.023 * RA * (Tmean + 17.8) * TD0.5where RA is extraterrestrial radiation at the top of the atmosphere, TD is the difference between mean maximum temperatures and mean minimum temperatures (Tmax - Tmin), and Tmean is equal to Tmax + Tmin divided by 2. The Hargreaves equation has been implemented globally on a per grid cell basis at 30 arc seconds resolution (~ 1km2 at the equator), in ArcGIS (v11.1) using Python v3.2 (see code availability section) to estimate PET/AI globally using future projections provided by the CMIP6 collaboration. The data to parametrize the equation were obtained from the Worldclim (worldclim.org) online data repository, which provides bias-corrected downscaled monthly values of minimum temperature, maximum temperature, and precipitation for 25 CMIP6 Earth System Models (ESMs), across four Shared Socio-economic Pathways (SSPs): 126, 245, 370 and 585. PET/AI was estimated for two historical periods, WorldClim 1.4 (1960-1990) and WorldClim 2.1 (1970-2000), representing on average a decades change, by applying the Hargreaves methodology described above. Similarly, PET/AI was estimated for two future time periods, namely 2021-2040 and 2041-2060, for each of the 25 models across their respective four SSP scenarios (126, 245, 370,585). Aridity Index Aridity is often expressed as an Aridity Index, comprised of the ratio of precipitation over PET, and signifying the amount of precipitation available in relation to atmospheric water demand and quantifying the water (from rainfall) availability for plant growth after ET demand has been met, comparing incoming moisture totals with potential outgoing moisture. The AI for the averaged time periods has been calculated on a per grid cell basis, as: AI = MA_Prec/MA_PETwhere: AI = Aridity Index MA_Prec = Mean Annual Precipitation MA_PET = Mean Annual Reference EvapotranspirationUsing the mean annual precipitation (MA_Prec) values obtained from the CMIP6 climate projections, while ET0 datasets estimated on a monthly average basis by the method described above were aggregated to mean annual values (MA_PET). Using this formulation, AI values are unitless, increasing with more humid condition and decreasing with more arid conditions.Multi-Model Averaged EnsemblesBased upon the distribution of the various scenarios along a gradient of their projected temperature and precipitation estimates for the each of the four SSP and two future time period, three multi-model ensembles, each articulated by their four respective SSPs, were identified. The three parameters of monthly minimum temperature, monthly maximum temperature and monthly precipitation for ESM’s included within each of these ensemble categories were averaged for each of their respective SSPs. These averaged parameters were then used to calculate the PET/AI as per the above methodology.Code Availablity:The algorithm and code in Python used to calculate PET and AI is available on Figshare at this link below:https://figshare.com/articles/software/Global_Future_PET_AI_Algorithm_Code_Python_-_Calculate_PET_AI/24978666DATA FORMATPET datasets are available as monthly averages (12 datasets, i.e. one dataset for each month, averaged over the specified time period) or as an annual average (1 dataset) for the specified time period. Aridity Index grid layers are available as one grid layer representing the annual average over the specified period. The following nomenclature is used to describe the dataset: Zipped Files - Directory Names refer to: Model_SSP_Time-PeriodFor example: ACCESS-CM2_126_2021-2040.zip Model: ACCESS-CM2 / SSP:126 / Time-Period: 2021-2040Prefix of Files (TIFFs) is either:pet_ for PET layers aridity_index for Aridity Index (no suffix)Suffix For PET Files is either:1, 2, ... 12 Month of the yearyr Yearly averagesd Standard DeviationExamples:pet_02.tif is the PET average for the month of February.pet_yr.tif is the PET annual average.’pet_sd.tif is the standard deviation of the annual PETaridity_index.tif is the annual aridity index. The PET values are defined as total mm of PET per month or per year. The Aridity Index values are unit-less.The geospatial dataset is in geographic coordinates; datum and spheroid are WGS84; spatial units are decimal degrees. The spatial resolution is 30 arc-seconds or 0.008333 degrees. Arc degrees and seconds are angular distances, and conversion to linear units (like km) varies with latitude, as below:The Future-PET and Future-Aridity Index data layers have been processed and finalized for distribution online as GEO-TIFFs. These datasets have been zipped (.zip) into monthly series or individual annual layers, by each combination of climate model/scenarios, and are available for online access. Data Storage HierarchyThe database is organized for storage into a hierarchy of directories (see ReadMe.doc):( Individual zipped files are generally about 1 GB or less) Associated Peer Reviewed Journal Article:Zomer RJ, Xu J, Spano D and Trabucco A. 2024. CMIP6-based global estimates of future aridity index and potential evapotranspiration for 2021-2060. Open Research Europe 4:157 https://doi.org/10.12688/openreseurope.18110.1For further info, please refer to these earlier paper describing the database and methodology:Zomer, R.J.; Xu, J.; Trabucco, A. 2022. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data 9, 409.Zomer, R. J; Bossio, D. A.; Trabucco, A.; van Straaten, O.; Verchot, L.V. 2008. Climate Change Mitigation: A Spatial Analysis of Global Land Suitability for Clean Development Mechanism Afforestation and Reforestation. Agric. Ecosystems and Environment. 126:67-80.Trabucco, A.; Zomer, R. J.; Bossio, D. A.; van Straaten, O.; Verchot, L.V. 2008. Climate Change Mitigation through Afforestation / Reforestation: A global analysis of hydrologic

  11. Bioclimate Projections: (11) Mean Temperature of Coldest Quarter

    • keep-cool-global-community.hub.arcgis.com
    • cacgeoportal.com
    • +2more
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (11) Mean Temperature of Coldest Quarter [Dataset]. https://keep-cool-global-community.hub.arcgis.com/maps/1a96d928c93c4e8fbc6a2391afd1da2f
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of mean temperature during the three coldest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  12. Bioclimate Projections: (13) Precipitation of Wettest Month

    • pacificgeoportal.com
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (13) Precipitation of Wettest Month [Dataset]. https://www.pacificgeoportal.com/maps/esri::bioclimate-projections-13-precipitation-of-wettest-month/about
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of total precipitation during the wettest month of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica. Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  13. d

    Data from: Potential effects of future climate change on global reptile...

    • search.dataone.org
    • datadryad.org
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias F. Biber; Alke Voskamp; Christian Hof (2025). Potential effects of future climate change on global reptile distributions and diversity [Dataset]. http://doi.org/10.5061/dryad.rn8pk0pgb
    Explore at:
    Dataset updated
    Jul 20, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Matthias F. Biber; Alke Voskamp; Christian Hof
    Time period covered
    Jan 1, 2023
    Description

    Aim: Until recently, complete information on global reptile distributions has not been widely available. Here, we provide the first comprehensive climate impact assessment for reptiles on a global scale. Location: Global, excluding Antarctica Time period: 1995, 2050, 2080 Major taxa studied: Reptiles Methods: We modelled the distribution of 6,296 reptile species and assessed potential global as well as realm-specific changes in species richness, the change in global species richness across climate space, and species-specific changes in range extent, overlap and position under future climate change. To assess the future climatic impact on 3,768 range-restricted species, which could not be modelled, we compared the future change in climatic conditions between both modelled and non-modelled species. Results: Reptile richness was projected to decline significantly over time, globally but also for most zoogeographic realms, with the greatest decrease in Brazil, Australia and South Africa. Sp..., These data comprise the raw data and results of the article: Biber et al. (2023) Potential effects of future climate change on global reptile distributions and diversity. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13646

    Â The methods used to generate these data are fully described in the main text of the paper, and all R code is provided below. Please see the usage notes for details.

    Code to reproduce the species distribution models, which we used in our analyses, is available at: https://github.com/christianhof/BioScen1.5_SDM , All data and code are contained within three different subfolders of a compressed (zipped) folder, as shown below.

    R: R-code of the performed analysis, as well as for creating the individual figures and supporting figures data: summarised species, climate and model output data files for creating the presented results, figures and supporting figures extdata: raw data predicted by the performed species distribution models (SDMs; code for performing the species distribution models and creating the raw data can be found here: https://github.com/christianhof/BioScen1.5_SDM

  14. Bioclimate Projections: (19) Precipitation of Coldest Quarter

    • cacgeoportal.com
    • pacificgeoportal.com
    • +3more
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (19) Precipitation of Coldest Quarter [Dataset]. https://www.cacgeoportal.com/maps/ec067623611d40d086193b21a3a4fce1
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer represents CMIP6 future projections of total precipitation during the three coldest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal Range Bioclimate 3 Isothermality Bioclimate 4 Temperature Seasonality Bioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual Range Bioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation Seasonality Bioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  15. d

    Data from: Raster files of the diversity and climate change analyses of...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaisberger, Hannes (2023). Raster files of the diversity and climate change analyses of regionally priority CWR in the SADC region [Dataset]. http://doi.org/10.7910/DVN/7ONUBJ
    Explore at:
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gaisberger, Hannes
    Description

    This set of raster files resulted from the diversity analysis of regionally priority CWR across the SADC region and the study of the impact of climate change on their distribution and richness. Three folders are made available: CWR_distribution, CC_threat, summary_files. [CWR_distribution]: Species distribution models (SDMs) were created for 75 taxa based on 22 environmental variables that included three geophysical (altitude, aspect, slope) and 19 bioclimatic layers. Altitude and the 19 bioclimatic variables, representing contemporary baseline climatology (1950–2000), were obtained from the WorldClim 1.4 (Hijmans et al., 2005) at 2.5 arc minutes (about 4.5 km at the equator) spatial resolution (http://www.worldclim.org/current), and the derived variables “aspect” and “slope” were calculate in ArcGIS 10.4.1. Species distribution models were obtained using MaxEnt 3.4.0 (Phillips et al., 2006) and were considered accurate and stable if they fulfilled the criteria suggested by Ramiréz-Villegas et al. (2010). Potential distributions for 35 taxa (those with less than 10 presence records or whose MaxEnt models did not comply with the validation criteria) were estimated by creating circular buffers of 50 km (CA50) around each occurrence point (Hijmans et al. 2001). File name: First three letters from ‘Genus’, plus first three letters from ‘Species’, plus first three letters from ‘Subspecies’ or ‘Variety’ if applicable, plus either ‘ca50’ (circular buffers of 50 km) or ‘sdm’ (Species Distribution Model), plus ‘_01’. Values: 0 = no species presence is predicted 1 = species presence is predicted. [CC_threat]: Climate projections for 2050 (average 2041−2060) obtained from Worldclim 1.4, (http://www.worldclim.org, Hijmans et al., 2005), consisting of downscaled data from General Circulation Models (GCMs) at a spatial resolution of 2.5 arc minutes (about 4.5 km at the equator). Median ensembles of 19 GCMs for RCP 4.5 and RCP 8.5 derived from the fifth assessment of the Intergovernmental Panel on Climate Change (IPCC−AR5) (IPCC 2014). The model results were projected under contemporary baseline conditions (WorldClim v1.4) to future climate scenarios (2050) creating binary layers of suitable versus unsuitable area (Scheldeman and van Zonneveld, 2010). Maps of change in CWR richness were obtained where: (i) species is not predicted by both current and future climate models, (ii) new potential areas: both future models (RCP 4.5 and RCP 8.5) predict presence in areas where the current model predicts absence; (ii) low impact areas: both future models (RCP 4.5 and RCP 8.5) predict presence in areas where the current model predicts presence; (iii) high impact areas: one future model (RCP 4.5 or RCP 8.5) predicts absence in area where the current model predicts presence; and (iv) very high impact areas: both future models (RCP 4.5 and RCP 8.5) predict absence in areas where the current model predicts presence. File name: First three letters from ‘Genus’, plus first three letters from ‘Species’, plus first three letters from ‘Subspecies’ or ‘Variety’ if applicable, plus ‘cc_recl’. Values: 0 = no species presence is predicted by both current and future climate models 1 = new potential areas: both future models (RCP 4.5 and RCP 8.5) predict presence in areas where the current model predicts absence 2 = low impact areas: both future models predict presence in areas where the current model predicts presence 3 = high impact areas: one future model (RCP 4.5 or RCP 8.5) predicts absence in area where the current model predicts presence 4 = very high impact areas: both future models (RCP 4.5 and RCP 8.5) predict absence in areas where the current model predicts presence. [Summary_files]: CWR richness maps were obtained for the 75 taxa for which SDM were developed and for all 110 taxa (SDM + CA50), under current/baseline climatic conditions and for both future climate scenarios (RCP 4.5 and RCP 8.5). File name: Either ‘cwr75’ (summary file for 75 CWR species) or ‘cwr110’ (summary file for 110 CWR species), plus either ‘ca50’ (circular buffers of 50 km) a/o ‘sdm’, plus either ‘current’ (baseline), ‘rcp45’ (RCP4.5 scenario) or ‘rcp85’ (RCP 8.5 scenario). Values: 0 = no species presence is predicted X = number of species presences predicted (species richness)

  16. Data from: Worldclim 2.1 versus Worldclim 1.4: climatic niche and grid...

    • zenodo.org
    • datadryad.org
    csv, tiff, txt
    Updated Jul 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Cerasoli; Francesco Cerasoli; Paola D'Alessandro; Maurizio Biondi; Paola D'Alessandro; Maurizio Biondi (2024). Worldclim 2.1 versus Worldclim 1.4: climatic niche and grid resolution affect between-version mismatches in habitat suitability models predictions across Europe [Dataset]. http://doi.org/10.5061/dryad.8w9ghx3nr
    Explore at:
    tiff, csv, txtAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesco Cerasoli; Francesco Cerasoli; Paola D'Alessandro; Maurizio Biondi; Paola D'Alessandro; Maurizio Biondi
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The influence of climate on the distribution of taxa has been extensively investigated in the last two decades through Habitat Suitability Models (HSMs). In this context, the Worldclim database represents an invaluable data source as it provides worldwide climate surfaces for both historical and future time horizons. Thousands of HSMs-based papers have been published taking advantage of Worldclim 1.4, the first online version of this repository. In 2017, Worldclim 2.1 was released. Here, we evaluated spatially explicit prediction mismatch at continental scale, focusing on Europe, between HSMs fitted using climate surfaces from the two Worldclim versions (between-version differences). To this aim, we simulated occurrence probability and presence-absence across Europe of four virtual species (VS) with differing climate-occurrence relationships. For each VS, we fitted HSMs upon uncorrelated bioclimatic variables derived from each Worldclim version at three grid resolutions. For each factor combination, HSMs attaining sufficient discrimination performance on spatially independent test data were projected across Europe under current conditions and various future scenarios, and importance scores of the single variables were computed. HSMs failed in accurately retrieving the simulated climate-occurrence relationships for the climate-tolerant VS and the one occurring under a narrow combination of climatic conditions. Under current climate, noticeable between-version prediction mismatch emerged across most of Europe for these two VSs, whose simulated suitability mainly depended upon diurnal or yearly variability in temperature; differently, between-version differences were more clustered toward areas showing extreme values, like mountainous massifs or southern regions, for VSs responding to average temperature and precipitation trends. Under future climate, the chosen emission scenarios and Global Climate Models did not evidently influence between-version prediction discrepancies, while grid resolution synergistically interacted with VSs' niche characteristics in determining extent of such differences. Our findings could help in re-evaluating previous biodiversity-related works relying on geographical predictions from Worldclim-based HSMs.

  17. Bioclimate Projections: (10) Mean Temperature of Warmest Quarter

    • digital-earth-pacificcore.hub.arcgis.com
    • climat.esri.ca
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (10) Mean Temperature of Warmest Quarter [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/maps/3b98ddf1c78d4f0c88bd297f85847c68
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of mean temperature during the three warmest months of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  18. Bioclimate Projections: (14) Precipitation of Driest Month

    • pacificgeoportal.com
    • climate.esri.ca
    • +3more
    Updated May 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (14) Precipitation of Driest Month [Dataset]. https://www.pacificgeoportal.com/maps/e26b01e4fa0a4aec9c5db991467b31a7
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer represents CMIP6 future projections of total precipitation during the driest month of the year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: mmCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica. Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

  19. a

    Bioclimate Projections Annual Mean Temperature for Brazil

    • hub.arcgis.com
    • ai-climate-hackathon-global-community.hub.arcgis.com
    • +1more
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Community Engagement Hub (2024). Bioclimate Projections Annual Mean Temperature for Brazil [Dataset]. https://hub.arcgis.com/maps/0052b73317aa4590868706e5cbb7a3c8
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    Global Community Engagement Hub
    Area covered
    Description

    This web map is a subset of Global Annual Mean Temperature Image Service. This layer represents CMIP6 future projections of mean annual temperature. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate

  20. Bioclimate Projections: (03) Isothermality

    • climate.esri.ca
    • climat.esri.ca
    • +1more
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Bioclimate Projections: (03) Isothermality [Dataset]. https://climate.esri.ca/maps/ef9f5d6a16ca41ada0c0075a8da46d48
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of how large the day-to-night temperatures oscillate relative to the summer-to-winter (annual) oscillations. Isothermality is derived by calculating the ratio of the mean diurnal range (Bio 2) to the annual temperature range (Bio 7), and then multiplying by 100. An isothermal value of 100 indicates the diurnal temperature range is equivalent to the annual temperature range, while anything less than 100 indicates a smaller level of temperature variability within an average month relative to the year. A species distribution may be influenced by larger or smaller temperature fluctuations within a month relative to the year and this predictor is useful for ascertaining such information. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: %Cell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality Issues Each model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). Bioclimate Projections: (07) Temperature Annual Range [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/808cfb3ab1614f8ab7e364de737e9e98
Organization logo

Bioclimate Projections: (07) Temperature Annual Range

Explore at:
Dataset updated
May 12, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

Important Note: This beta item will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer represents CMIP6 future projections of temperature variation over an entire year. This layer can be used to compare with recent climate histories to better understand the potential impacts of future climate change.WorldClim produced this projection as part of a series of 19 bioclimate variables identified by the USGS and provides this description:"Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year)."Time Extent: averages from 2021-2040, 2041-2060, 2061-2080, 2081-2100Units: deg CCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 32 Bit FloatData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim CMIP6 Bioclimate Climate ScenariosThe CMIP6 climate experiments use Shared Socioeconomic Pathways (SSPs) to model future climate scenarios. Each SSP pairs a human/community behavior component with the traditional RCP greenhouse gas forcing from the previous CMIP5. Three SSPs were chosen by Esri to be included in the service based on user requests: SSP2 4.5, SSP3 7.0 and SSP5 8.5.SSPScenarioEstimated warming(2041–2060)Estimated warming(2081–2100)Very likely range in °C(2081–2100)SSP2-4.5intermediate GHG emissions:CO2 emissions around current levels until 2050, then falling but not reaching net zero by 21002.0 °C2.7 °C2.1 – 3.5SSP3-7.0high GHG emissions:CO2 emissions double by 21002.1 °C3.6 °C2.8 – 4.6SSP5-8.5very high GHG emissions:CO2 emissions triple by 20752.4 °C4.4 °C3.3 – 5.7While the 8.5 scenario is no longer generally considered likely, SSP3 7.0 has been included and is considered the high end of possibilities. SSP5 8.5 has been retained since many organizations report to this threshold. The warming associated with SSP2 4.5 is equivalent to the global targets set at the 2021 United Nations COP26 meetings in Glasgow. Processing the Climate DataWorldClim provides 20-year averaged outputs for the various SSPs from 24 global climate models. A selection of 13 models were averaged for each variable and time based on Mahony et al 2022. These models included ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CNRM-ESM2-1, EC-Earth3-Veg, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL. GFDL-ESM4 was not available for SSP2 4.5 or SSP5 8.5. Accessing the Multidimensional InformationThe time and SSP scenario are built into the layer using a multidimensional raster. Enable the time slider to move across the 20-year average periods. In ArcGIS Online and Pro, use the Multidimensional Filter to select the SSP (SSP2 4.5 is the default). What can you do with this layer?These multidimensional imagery tiles support analysis using ArcGIS Online or Pro. Use the Bioclimate Baseline layer to see the difference in pixels and calculate change from the historic period into the future. Use the Multidimensional tab in ArcGIS Pro to access a variety of useful tools. Each layer or variable can be styled using the Image Display options. Known Quality IssuesEach model is downscaled from ~100km resolution to ~5km resolution by WorldClim. Some artifacts are inevitable, especially at a global scale. Some variables have distinct transitions, especially in Greenland. Also, SSP2 4.5 has missing data for several variables in Antarctica.Related LayersBioclimate 1 Annual Mean TemperatureBioclimate 2 Mean Diurnal RangeBioclimate 3 IsothermalityBioclimate 4 Temperature SeasonalityBioclimate 5 Max Temperature of Warmest MonthBioclimate 6 Min Temperature Of Coldest MonthBioclimate 7 Temperature Annual RangeBioclimate 8 Mean Temperature Of Wettest QuarterBioclimate 9 Mean Temperature Of Driest QuarterBioclimate 10 Mean Temperature Of Warmest QuarterBioclimate 11 Mean Temperature Of Coldest QuarterBioclimate 12 Annual PrecipitationBioclimate 13 Precipitation Of Wettest MonthBioclimate 14 Precipitation Of Driest MonthBioclimate 15 Precipitation SeasonalityBioclimate 16 Precipitation Of Wettest QuarterBioclimate 17 Precipitation Of Driest QuarterBioclimate 18 Precipitation Of Warmest QuarterBioclimate 19 Precipitation Of Coldest QuarterBioclimate Baseline 1970-2000

Search
Clear search
Close search
Google apps
Main menu