100+ datasets found
  1. I

    Molecular Biology Databases Published in Nucleic Acids Research between...

    • databank.illinois.edu
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidi Imker (2024). Molecular Biology Databases Published in Nucleic Acids Research between 1991-2016 [Dataset]. http://doi.org/10.13012/B2IDB-4311325_V1
    Explore at:
    Dataset updated
    Feb 1, 2024
    Authors
    Heidi Imker
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset was developed to create a census of sufficiently documented molecular biology databases to answer several preliminary research questions. Articles published in the annual Nucleic Acids Research (NAR) “Database Issues” were used to identify a population of databases for study. Namely, the questions addressed herein include: 1) what is the historical rate of database proliferation versus rate of database attrition?, 2) to what extent do citations indicate persistence?, and 3) are databases under active maintenance and does evidence of maintenance likewise correlate to citation? An overarching goal of this study is to provide the ability to identify subsets of databases for further analysis, both as presented within this study and through subsequent use of this openly released dataset.

  2. List of bioinformatics tools and databases students used.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    João Carlos Sousa; Manuel João Costa; Joana Almeida Palha (2023). List of bioinformatics tools and databases students used. [Dataset]. http://doi.org/10.1371/journal.pone.0000481.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    João Carlos Sousa; Manuel João Costa; Joana Almeida Palha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    List of bioinformatics tools and databases students used.

  3. List of protein databases.

    • plos.figshare.com
    xls
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Jacques; Paulina Bolivar; Kristian Pietras; Emma U. Hammarlund (2023). List of protein databases. [Dataset]. http://doi.org/10.1371/journal.pone.0279597.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Florian Jacques; Paulina Bolivar; Kristian Pietras; Emma U. Hammarlund
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developments in sequencing technologies and the sequencing of an ever-increasing number of genomes have revolutionised studies of biodiversity and organismal evolution. This accumulation of data has been paralleled by the creation of numerous public biological databases through which the scientific community can mine the sequences and annotations of genomes, transcriptomes, and proteomes of multiple species. However, to find the appropriate databases and bioinformatic tools for respective inquiries and aims can be challenging. Here, we present a compilation of DNA and protein databases, as well as bioinformatic tools for phylogenetic reconstruction and a wide range of studies on molecular evolution. We provide a protocol for information extraction from biological databases and simple phylogenetic reconstruction using probabilistic and distance methods, facilitating the study of biodiversity and evolution at the molecular level for the broad scientific community.

  4. I

    Funding and Operating Organizations for Long-Lived Molecular Biology...

    • databank.illinois.edu
    • aws-databank-alb.library.illinois.edu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heidi Imker, Funding and Operating Organizations for Long-Lived Molecular Biology Databases [Dataset]. http://doi.org/10.13012/B2IDB-3993338_V1
    Explore at:
    Authors
    Heidi Imker
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The organizations that contribute to the longevity of 67 long-lived molecular biology databases published in Nucleic Acids Research (NAR) between 1991-2016 were identified to address two research questions 1) which organizations fund these databases? and 2) which organizations maintain these databases? Funders were determined by examining funding acknowledgements in each database's most recent NAR Database Issue update article published (prior to 2017) and organizations operating the databases were determine through review of database websites.

  5. n

    Bioinformatic Harvester IV (beta) at Karlsruhe Institute of Technology

    • neuinfo.org
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bioinformatic Harvester IV (beta) at Karlsruhe Institute of Technology [Dataset]. http://identifiers.org/RRID:SCR_008017
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Harvester is a Web-based tool that bulk-collects bioinformatic data on human proteins from various databases and prediction servers. It is a meta search engine for gene and protein information. It searches 16 major databases and prediction servers and combines the results on pregenerated HTML pages. In this way Harvester can provide comprehensive gene-protein information from different servers in a convenient and fast manner. As full text meta search engine, similar to Google trade mark, Harvester allows screening of the whole genome proteome for current protein functions and predictions in a few seconds. With Harvester it is now possible to compare and check the quality of different database entries and prediction algorithms on a single page. Sponsors: This work has been supported by the BMBF with grants 01GR0101 and 01KW0013.

  6. n

    Bioinformatics Links Directory

    • neuinfo.org
    • scicrunch.org
    • +3more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bioinformatics Links Directory [Dataset]. http://identifiers.org/RRID:SCR_008018
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of curated links to molecular resources, tools and databases selected on the basis of recommendations from bioinformatics experts in the field. This resource relies on input from its community of bioinformatics users for suggestions. Starting in 2003, it has also started listing all links contained in the NAR Webserver issue. The different types of information available in this portal: * Computer Related: This category contains links to resources relating to programming languages often used in bioinformatics. Other tools of the trade, such as web development and database resources, are also included here. * Sequence Comparison: Tools and resources for the comparison of sequences including sequence similarity searching, alignment tools, and general comparative genomics resources. * DNA: This category contains links to useful resources for DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here. * Education: Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops. * Expression: Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data. * Human Genome: This section contains links to draft annotations of the human genome in addition to resources for sequence polymorphisms and genomics. Also included are links related to ethical discussions surrounding the study of the human genome. * Literature: Links to resources related to published literature, including tools to search for articles and through literature abstracts. Additional text mining resources, open access resources, and literature goldmines are also listed. * Model Organisms: Included in this category are links to resources for various model organisms ranging from mammals to microbes. These include databases and tools for genome scale analyses. * Other Molecules: Bioinformatics tools related to molecules other than DNA, RNA, and protein. This category will include resources for the bioinformatics of small molecules as well as for other biopolymers including carbohydrates and metabolites. * Protein: This category contains links to useful resources for protein sequence and structure analyses. Resources for phylogenetic analyses, prediction of protein features, and analyses of interactions are also found here. * RNA: Resources include links to sequence retrieval programs, structure prediction and visualization tools, motif search programs, and information on various functional RNAs.

  7. Fantastic databases and where to find them: Web applications for researchers...

    • scielo.figshare.com
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerda Cristal Villalba; Ursula Matte (2023). Fantastic databases and where to find them: Web applications for researchers in a rush [Dataset]. http://doi.org/10.6084/m9.figshare.20018091.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Gerda Cristal Villalba; Ursula Matte
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Public databases are essential to the development of multi-omics resources. The amount of data created by biological technologies needs a systematic and organized form of storage, that can quickly be accessed, and managed. This is the objective of a biological database. Here, we present an overview of human databases with web applications. The databases and tools allow the search of biological sequences, genes and genomes, gene expression patterns, epigenetic variation, protein-protein interactions, variant frequency, regulatory elements, and comparative analysis between human and model organisms. Our goal is to provide an opportunity for exploring large datasets and analyzing the data for users with little or no programming skills. Public user-friendly web-based databases facilitate data mining and the search for information applicable to healthcare professionals. Besides, biological databases are essential to improve biomedical search sensitivity and efficiency and merge multiple datasets needed to share data and build global initiatives for the diagnosis, prognosis, and discovery of new treatments for genetic diseases. To show the databases at work, we present a a case study using ACE2 as example of a gene to be investigated. The analysis and the complete list of databases is available in the following website .

  8. n

    DAVID

    • neuinfo.org
    • dknet.org
    • +1more
    Updated Aug 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). DAVID [Dataset]. http://identifiers.org/RRID:SCR_001881
    Explore at:
    Dataset updated
    Aug 17, 2024
    Description

    Bioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

  9. d

    Alternative Splicing Annotation Project II Database

    • dknet.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Alternative Splicing Annotation Project II Database [Dataset]. http://identifiers.org/RRID:SCR_000322
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. An expanded version of the Alternative Splicing Annotation Project (ASAP) database with a new interface and integration of comparative features using UCSC BLASTZ multiple alignments. It supports 9 vertebrate species, 4 insects, and nematodes, and provides with extensive alternative splicing analysis and their splicing variants. As for human alternative splicing data, newly added EST libraries were classified and included into previous tissue and cancer classification, and lists of tissue and cancer (normal) specific alternatively spliced genes are re-calculated and updated. They have created a novel orthologous exon and intron databases and their splice variants based on multiple alignment among several species. These orthologous exon and intron database can give more comprehensive homologous gene information than protein similarity based method. Furthermore, splice junction and exon identity among species can be valuable resources to elucidate species-specific genes. ASAP II database can be easily integrated with pygr (unpublished, the Python Graph Database Framework for Bioinformatics) and its powerful features such as graph query, multi-genome alignment query and etc. ASAP II can be searched by several different criteria such as gene symbol, gene name and ID (UniGene, GenBank etc.). The web interface provides 7 different kinds of views: (I) user query, UniGene annotation, orthologous genes and genome browsers; (II) genome alignment; (III) exons and orthologous exons; (IV) introns and orthologous introns; (V) alternative splicing; (IV) isoform and protein sequences; (VII) tissue and cancer vs. normal specificity. ASAP II shows genome alignments of isoforms, exons, and introns in UCSC-like genome browser. All alternative splicing relationships with supporting evidence information, types of alternative splicing patterns, and inclusion rate for skipped exons are listed in separate tables. Users can also search human data for tissue- and cancer-specific splice forms at the bottom of the gene summary page. The p-values for tissue-specificity as log-odds (LOD) scores, and highlight the results for LOD >= 3 and at least 3 EST sequences are all also reported.

  10. NCBI Nt (Nucleotide) database FASTA file from 2017-10-26

    • zenodo.org
    application/gzip
    Updated Dec 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Fellows Yates; James Fellows Yates (2020). NCBI Nt (Nucleotide) database FASTA file from 2017-10-26 [Dataset]. http://doi.org/10.5281/zenodo.4382154
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Dec 23, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    James Fellows Yates; James Fellows Yates
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This FASTA file is the NCBI Nt (Nucleotide) database (public domain) used for holistic metagenomic screening of ancient DNA data at the Department of Archaeogenetics at the Max Planck Institute for the Science of Human History. We offer here the FASTA file used to construct MALT databases (https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/malt/), which are generally too large for uploading. Please see each relevent publications that use the database for MALT database construction commands.

    NCBI does not retain older versions of this database which is why this has been uploaded here. It was downloaded on 2017-10-26 12:39 from: ftp://ftp-trace.ncbi.nih.gov/blast/db/FASTA/nt.gz. The NCBI Nt database is released into the public domain as per https://www.ncbi.nlm.nih.gov/home/about/policies/.

  11. Databases for MyCodentifier: A tool for routine identification of...

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jodie A. Schildkraut; Jodie A. Schildkraut; Jordy P.M. Coolen; Jordy P.M. Coolen; Heleen Severin; Ellen Koenraad; Nicole Aalders; Willem J.G. Melchers; Wouter Hoefsloot; Wouter Hoefsloot; Heiman F.L. Wertheim; Heiman F.L. Wertheim; Jakko van Ingen; Jakko van Ingen; Heleen Severin; Ellen Koenraad; Nicole Aalders; Willem J.G. Melchers (2022). Databases for MyCodentifier: A tool for routine identification of nontuberculous mycobacteria using MGIT enriched shotgun metagenomics. [Dataset]. http://doi.org/10.5281/zenodo.7396289
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jodie A. Schildkraut; Jodie A. Schildkraut; Jordy P.M. Coolen; Jordy P.M. Coolen; Heleen Severin; Ellen Koenraad; Nicole Aalders; Willem J.G. Melchers; Wouter Hoefsloot; Wouter Hoefsloot; Heiman F.L. Wertheim; Heiman F.L. Wertheim; Jakko van Ingen; Jakko van Ingen; Heleen Severin; Ellen Koenraad; Nicole Aalders; Willem J.G. Melchers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Databases used for MyCodentifier a Nextflow pipeline to identify Mycobacterium tuberculosis complex (MTBC) and Nontuberculous mycobacteria (NTM) species from Next-generation sequencing (NGS) data.

    Short description:
    The pipeline is constructed using nextflow as workflow manager running in a docker container. It is able to identify species of MTBC/NTM from positive Mycobacterial Growth Indicator Tube (MGIT) cultures. To do so it uses an hsp65 database for fast identification coupled with a Metagenomic method using centrifuge to identify on genome level. For TB it also is able to identify subspecies. Results are presented in automated pdf and html reports.

    Databases
    NameShort Description
    20220726_ref.tar.gz7 major mycobacterial genomes as centrifuge classification database, used for reference-based mapping and genotype resistance prediction
    20220726_wgs_centrifuge_db_Radboudumc_MB.tar.gzcentrifuge classification database using Tortoli et al 2017 Mycobacterium strains + additional strains
    genomes.tar.gz7 major mycobacterial genomes, annotation and Genbank files. Files are paired with 20220726_ref.tar.gz
    snpEff.tar.gz7 major mycobacterial genomes annotation models for snpEff.
    Tortoli_etal_hsp65.tar.gzKMA database of hsp65 gene extractions of the Tortoli et al 2017 Mycobacterium strains.

    Used in the study:
    p_compressed+h+v.tar.gz (12/06/2016)

    Databases available via ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data or https://ccb.jhu.edu/software/centrifuge/manual.shtml#custom-database

    MyCodentifier Github:

    https://jordycoolen.github.io/MyCodentifier/

  12. c

    Bioinformatics Market size was USD 12.76 Billion in 2022!

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Bioinformatics Market size was USD 12.76 Billion in 2022! [Dataset]. https://www.cognitivemarketresearch.com/bioinformatics-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global Bioinformatics market size was USD 12.76 Billion in 2022 and it is forecasted to reach USD 29.32 Billion by 2030. Bioinformatics Industry's Compound Annual Growth Rate will be 10.4% from 2023 to 2030. What are the driving factors for the Bioinformatics market?

    The primary factors propelling the global bioinformatics industry are advances in genomics, rising demand for protein sequencing, and rising public-private sector investment in bioinformatics. Large volumes of data are being produced by the expanding use of next-generation sequencing (NGS) and other genomic technologies; these data must be analyzed using advanced bioinformatics tools. Furthermore, the global bioinformatics industry may benefit from the development of emerging advanced technologies. However, the bioinformatics discipline contains intricate algorithms and massive amounts of data, which can be difficult for researchers and demand a lot of processing power. What is Bioinformatics?

    Bioinformatics is related to genetics and genomics, which involves the use of computer technology to store, collect, analyze, and disseminate biological information, and data, such as DNA and amino acid sequences or annotations about these sequences. Researchers and medical professionals use databases that organize and index this biological data to better understand health and disease, and in some circumstances, as a component of patient care. Through the creation of software and algorithms, bioinformatics is primarily used to extract knowledge from biological data. Bioinformatics is frequently used in the analysis of genomics, proteomics, 3D protein structure modeling, image analysis, drug creation, and many other fields.

  13. d

    Data from: Prophage-DB: A comprehensive database to explore diversity,...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Etan Dieppa-Colón; Cody Martin; Karthik Anantharaman (2024). Prophage-DB: A comprehensive database to explore diversity, distribution, and ecology of prophages [Dataset]. http://doi.org/10.5061/dryad.3n5tb2rs5
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Etan Dieppa-Colón; Cody Martin; Karthik Anantharaman
    Time period covered
    Jun 27, 2024
    Description

    Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are still at the surface level. Among phages, some adopt the lysogenic mode of infection, where the genome integrates into the host cell genome, forming a prophage. Prophages enable viral genome replication without host cell lysis and often contribute novel and beneficial traits to the host genome. Despite their importance, research on prophages is limited. Current phage research predominantly focuses on lytic phages, leaving a significant gap in knowledge regarding prophages, including their biology, diversity, and ecological roles. Results: To bridge this gap, the creation of Prophage-DB, a prophage database, aims to a..., , , # Prophage-DB: A comprehensive database to explore diversity, distribution, and ecology of prophages

    https://doi.org/10.5061/dryad.3n5tb2rs5

    This dataset contains prophage sequences (available as .fna files) identified from prokaryotic genomes from three public databases (Genome Taxonomy Database (GTDB) (release 207), National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (accessed March 2023), and Searchable Planetary-scale mIcrobiome REsource (SPIRE). The downloaded prokaryotic genomes from these databases contained both archaeal and bacterial representative genomes (SPIRE also included data from unknown hosts).Â

    Methods

    Prophage identification from downloaded representative genomes was carried out using VIBRANT (v1.2.1). We used the default arguments when using VIBRANT (minimum scaffold length requirement = 1000 base pairs, minimum number of open readings frames (ORFs, or proteins) per scaffold requi...

  14. m

    Data from: PseudoResistance DB: A new Database of antibiotics related to...

    • data.mendeley.com
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caio Cheohen (2024). PseudoResistance DB: A new Database of antibiotics related to Pseudomonas aeruginosa antibiotic resistance [Dataset]. http://doi.org/10.17632/bxdn3p33z2.1
    Explore at:
    Dataset updated
    Nov 8, 2024
    Authors
    Caio Cheohen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This research addresses the pressing issue of antibiotic resistance, a global health challenge that undermines the efficacy of treatments against infectious diseases. Focusing on Pseudomonas aeruginosa—a Gram-negative bacterium known for causing opportunistic infections—this study emphasizes its prioritization by the World Health Organization (WHO) as a critical-level pathogen requiring new therapeutic approaches.

    To identify antibiotics associated with P. aeruginosa, the study employed text mining techniques on the Scielo database. The resulting dataset comprises 98 antibiotics, each documented with detailed textual information and referencing data. Additionally, the dataset includes structural files of the antibiotics in several formats suitable for computational modeling and simulations. These formats encompass Protein Data Bank, Partial Charge & Atom Type (PDBQT), Simplified Molecular Input Line Entry System (SMI), IUPAC International Chemical Identifier (INCHI), Molecular Design Limited Molfile (MOL2), Structure-Data File (SDF), Chemical Markup Language (CML), Cartesian Coordinates File (XYZ), Scalable Vector Graphics (SVG), Molecular File (MOL) and Protein Data Bank (PDB) files, with molecular models generated via OpenBabel to facilitate advanced studies in drug development and resistance mechanisms.

  15. List of bioinformatics tools and databases used for sequence based function...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohd Shahbaaz; Md. ImtaiyazHassan; Faizan Ahmad (2023). List of bioinformatics tools and databases used for sequence based function annotation. [Dataset]. http://doi.org/10.1371/journal.pone.0084263.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Mohd Shahbaaz; Md. ImtaiyazHassan; Faizan Ahmad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    List of bioinformatics tools and databases used for sequence based function annotation.

  16. m

    Data in brief of genome and bioinformatic of vicilins from Vigna unguiculata...

    • data.mendeley.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antônio Rocha (2023). Data in brief of genome and bioinformatic of vicilins from Vigna unguiculata [Dataset]. http://doi.org/10.17632/7ysf2zbfkt.2
    Explore at:
    Dataset updated
    Mar 16, 2023
    Authors
    Antônio Rocha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in brief is repository of article: Genomic and bioinformatic analysis of Vicilin dataset, the 7S globulin from cowpea (Vigna unguiculata) seeds

  17. n

    EchoBASE

    • neuinfo.org
    • dknet.org
    • +2more
    Updated May 14, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2006). EchoBASE [Dataset]. http://identifiers.org/RRID:SCR_002430
    Explore at:
    Dataset updated
    May 14, 2006
    Description

    A database that curates new experimental and bioinformatic information about the genes and gene products of the model bacterium Escherichia coli K-12 strain MG1655. It has been created to integrate information from post-genomic experiments into a single resource with the aim of providing functional predictions for the 1500 or so gene products for which we have no knowledge of their physiological function. While EchoBASE provides a basic annotation of the genome, taken from other databases, its novelty is in the curation of post-genomic experiments and their linkage to genes of unknown function. Experiments published on E. coli are curated to one of two levels. Papers dealing with the determination of function of a single gene are briefly described, while larger dataset are actually included in the database and can be searched and manipulated. This includes data for proteomics studies, protein-protein interaction studies, microarray data, functional genomic approaches (looking at multiple deletion strains for novel phenotypes) and a wide range of predictions that come out of in silico bioinformatic approaches. The aim of the database is to provide hypothesis for the functions of uncharacterized gene products that may be used by the E. coli research community to further our knowledge of this model bacterium.

  18. f

    List of nucleic acid databases.

    • figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Jacques; Paulina Bolivar; Kristian Pietras; Emma U. Hammarlund (2023). List of nucleic acid databases. [Dataset]. http://doi.org/10.1371/journal.pone.0279597.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Florian Jacques; Paulina Bolivar; Kristian Pietras; Emma U. Hammarlund
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developments in sequencing technologies and the sequencing of an ever-increasing number of genomes have revolutionised studies of biodiversity and organismal evolution. This accumulation of data has been paralleled by the creation of numerous public biological databases through which the scientific community can mine the sequences and annotations of genomes, transcriptomes, and proteomes of multiple species. However, to find the appropriate databases and bioinformatic tools for respective inquiries and aims can be challenging. Here, we present a compilation of DNA and protein databases, as well as bioinformatic tools for phylogenetic reconstruction and a wide range of studies on molecular evolution. We provide a protocol for information extraction from biological databases and simple phylogenetic reconstruction using probabilistic and distance methods, facilitating the study of biodiversity and evolution at the molecular level for the broad scientific community.

  19. d

    High Quality SNP Database

    • dknet.org
    • scicrunch.org
    • +2more
    Updated May 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). High Quality SNP Database [Dataset]. http://identifiers.org/RRID:SCR_007230
    Explore at:
    Dataset updated
    May 11, 2024
    Description

    This is the HQSNP DB (high-quality SNP database) developed by CHG bioinformatics group. The high-quality SNP is defined as a SNP having allele frequency or genotyping data. The majority of the HQSNPs come from HapMap, others come from JSNP (Japanese SNP database), TSC (The SNP Consortium), Affymetrix 120K SNP, and Perlegen SNP. There are four kinds of SNP search you can do: * Get SNPs by dbSNP rs#: Choose this search if you have already selected a list of SNPs and you just want to get the SNP information. The program will generate a Excel file containing the SNP flanking sequence, variation, quality, function, etc. In the Excel file, there are 10 highlighted fields. You can send only those highlighted information to Illumina to get SNP pre-score. (The same fields are presented in other types of searches as well.) * Get gene SNPs by gene names: Choose this search if you have a list of gene names and you want to get the SNP information in these genes. The gene name can be official gene symbol, Ensembl gene ID, RefSeq accession ID, LocusLink number, etc. * Get gene SNPs by genome regions: Choose this search if you have a list of genome regions and you want to get all gene SNP information in these regions. The software will find all the Ensembl genes in the regions and find SNPs associated to each Ensembl gene. * Get genome scan SNPs by genome regions: Choose this search if you have a list of genome regions and you want to get evenly spaced SNPs in these regions. A SNP selection tool (SNPselector) was built upon HQSNP. It took snp ID list, gene name list, or genome region list as input and searched SNPs for genome scan or gene assoctiation study. It could take an optional ABI SNP file (exported from ABI SNP search web page) as input for checking whether the candidate SNP is available from ABI. It could also take an optional Illumina SNP pre-score file as input to select SNP for Illumina SNP assay. It generated results sorted by tag SNP in LD block, SNP quality, SNP function, SNP regulatory potential, and SNP mutation risk. SNPselector is now retired from public use (as of September 30, 2010).

  20. Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/bioinformatics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, North America, France, United Kingdom, Europe, Germany, United States
    Description

    Snapshot img

    Bioinformatics Market Size 2025-2029

    The bioinformatics market size is valued to increase by USD 15.98 billion, at a CAGR of 17.4% from 2024 to 2029. Reduction in cost of genetic sequencing will drive the bioinformatics market.

    Market Insights

    North America dominated the market and accounted for a 43% growth during the 2025-2029.
    By Application - Molecular phylogenetics segment was valued at USD 4.48 billion in 2023
    By Product - Platforms segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 309.88 million 
    Market Future Opportunities 2024: USD 15978.00 million
    CAGR from 2024 to 2029 : 17.4%
    

    Market Summary

    The market is a dynamic and evolving field that plays a pivotal role in advancing scientific research and innovation in various industries, including healthcare, agriculture, and academia. One of the primary drivers of this market's growth is the rapid reduction in the cost of genetic sequencing, making it increasingly accessible to researchers and organizations worldwide. This affordability has led to an influx of large-scale genomic data, necessitating the development of sophisticated bioinformatics tools for Next-Generation Sequencing (NGS) data analysis. Another significant trend in the market is the shortage of trained laboratory professionals capable of handling and interpreting complex genomic data. This skills gap creates a demand for user-friendly bioinformatics software and services that can streamline data analysis and interpretation, enabling researchers to focus on scientific discovery rather than data processing. For instance, a leading pharmaceutical company could leverage bioinformatics tools to optimize its drug discovery pipeline by analyzing large genomic datasets to identify potential drug targets and predict their efficacy. By integrating these tools into its workflow, the company can reduce the time and cost associated with traditional drug discovery methods, ultimately bringing new therapies to market more efficiently. Despite its numerous benefits, the market faces challenges such as data security and privacy concerns, data standardization, and the need for interoperability between different software platforms. Addressing these challenges will require collaboration between industry stakeholders, regulatory bodies, and academic institutions to establish best practices and develop standardized protocols for data sharing and analysis.

    What will be the size of the Bioinformatics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleBioinformatics, a dynamic and evolving market, is witnessing significant growth as businesses increasingly rely on high-performance computing, gene annotation, and bioinformatics software to decipher regulatory elements, gene expression regulation, and genomic variation. Machine learning algorithms, phylogenetic trees, and ontology development are integral tools for disease modeling and protein interactions. cloud computing platforms facilitate the storage and analysis of vast biological databases and sequence datas, enabling data mining techniques and statistical modeling for sequence assembly and drug discovery pipelines. Proteomic analysis, protein folding, and computational biology are crucial components of this domain, with biomedical ontologies and data integration platforms enhancing research efficiency. The integration of gene annotation and machine learning algorithms, for instance, has led to a 25% increase in accurate disease diagnosis within leading healthcare organizations. This trend underscores the importance of investing in advanced bioinformatics solutions for improved regulatory compliance, budgeting, and product strategy.

    Unpacking the Bioinformatics Market Landscape

    Bioinformatics, an essential discipline at the intersection of biology and computer science, continues to revolutionize the scientific landscape. Evolutionary bioinformatics, with its molecular dynamics simulation and systems biology approaches, enables a deeper understanding of biological processes, leading to improved ROI in research and development. For instance, next-generation sequencing technologies have reduced sequencing costs by a factor of ten, enabling genome-wide association studies and transcriptome sequencing on a previously unimaginable scale. In clinical bioinformatics, homology modeling techniques and protein-protein interaction analysis facilitate drug target identification, enhancing compliance with regulatory requirements. Phylogenetic analysis tools and comparative genomics studies contribute to the discovery of novel biomarkers and the development of personalized treatments. Bioimage informatics and proteomic data integration employ advanced sequence alignment algorithms and functional genomics tools to unlock new insights from complex

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Heidi Imker (2024). Molecular Biology Databases Published in Nucleic Acids Research between 1991-2016 [Dataset]. http://doi.org/10.13012/B2IDB-4311325_V1

Molecular Biology Databases Published in Nucleic Acids Research between 1991-2016

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 1, 2024
Authors
Heidi Imker
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This dataset was developed to create a census of sufficiently documented molecular biology databases to answer several preliminary research questions. Articles published in the annual Nucleic Acids Research (NAR) “Database Issues” were used to identify a population of databases for study. Namely, the questions addressed herein include: 1) what is the historical rate of database proliferation versus rate of database attrition?, 2) to what extent do citations indicate persistence?, and 3) are databases under active maintenance and does evidence of maintenance likewise correlate to citation? An overarching goal of this study is to provide the ability to identify subsets of databases for further analysis, both as presented within this study and through subsequent use of this openly released dataset.

Search
Clear search
Close search
Google apps
Main menu