Facebook
TwitterAttribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.
Facebook
TwitterDatabase of curated links to molecular resources, tools and databases selected on the basis of recommendations from bioinformatics experts in the field. This resource relies on input from its community of bioinformatics users for suggestions. Starting in 2003, it has also started listing all links contained in the NAR Webserver issue. The different types of information available in this portal: * Computer Related: This category contains links to resources relating to programming languages often used in bioinformatics. Other tools of the trade, such as web development and database resources, are also included here. * Sequence Comparison: Tools and resources for the comparison of sequences including sequence similarity searching, alignment tools, and general comparative genomics resources. * DNA: This category contains links to useful resources for DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here. * Education: Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops. * Expression: Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data. * Human Genome: This section contains links to draft annotations of the human genome in addition to resources for sequence polymorphisms and genomics. Also included are links related to ethical discussions surrounding the study of the human genome. * Literature: Links to resources related to published literature, including tools to search for articles and through literature abstracts. Additional text mining resources, open access resources, and literature goldmines are also listed. * Model Organisms: Included in this category are links to resources for various model organisms ranging from mammals to microbes. These include databases and tools for genome scale analyses. * Other Molecules: Bioinformatics tools related to molecules other than DNA, RNA, and protein. This category will include resources for the bioinformatics of small molecules as well as for other biopolymers including carbohydrates and metabolites. * Protein: This category contains links to useful resources for protein sequence and structure analyses. Resources for phylogenetic analyses, prediction of protein features, and analyses of interactions are also found here. * RNA: Resources include links to sequence retrieval programs, structure prediction and visualization tools, motif search programs, and information on various functional RNAs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Files associated with the extraction of bioinformatics tools and resources from a typical genome sequencing publication.
Facebook
Twitter
According to our latest research, the global bioinformatics software market size reached USD 11.6 billion in 2024, driven by rapid advancements in genomics and computational biology. The market is forecasted to grow at a robust CAGR of 13.2% from 2025 to 2033, projecting a market value of approximately USD 34.3 billion by the end of 2033. This significant expansion is primarily attributed to the increasing integration of artificial intelligence and machine learning in biological data analysis, as well as the growing adoption of precision medicine and next-generation sequencing technologies across healthcare and research sectors.
A central growth factor for the bioinformatics software market is the exponential rise in biological data generation, particularly through next-generation sequencing (NGS) platforms. As the cost of sequencing continues to decline, laboratories and healthcare providers are generating massive volumes of genomic, transcriptomic, and proteomic data that require sophisticated analysis and interpretation. Bioinformatics software solutions are becoming indispensable for managing, storing, and extracting meaningful insights from this data, enabling breakthroughs in personalized medicine, disease gene identification, and biomarker discovery. Additionally, the increasing collaboration between academic institutions and commercial entities is accelerating the development and deployment of advanced bioinformatics tools, further fueling market growth.
Another pivotal driver is the growing application of bioinformatics in drug discovery and development. Pharmaceutical and biotechnology companies are leveraging bioinformatics software to streamline target identification, optimize lead compounds, and predict drug efficacy and toxicity through in silico modeling. These capabilities significantly reduce the time and cost associated with traditional drug development pipelines, enhancing the productivity of R&D activities. Furthermore, the integration of bioinformatics with clinical diagnostics is enabling more accurate disease diagnosis and prognosis, supporting the trend toward precision healthcare. The expanding use of cloud-based solutions is also democratizing access to powerful computational resources, making bioinformatics tools available to a broader range of users globally.
The evolving regulatory landscape and the need for compliance with data privacy standards are also shaping the bioinformatics software market. Governments and regulatory bodies across major regions are implementing stringent guidelines for the storage, sharing, and analysis of sensitive biological and patient data. This is prompting software vendors to develop solutions with enhanced security features and interoperability, ensuring compliance while facilitating seamless data exchange among stakeholders. The increasing emphasis on data standardization and integration is fostering the development of interoperable platforms that can support multi-omics analyses and cross-disciplinary research, further expanding the potential applications of bioinformatics software.
Bioinformatics in Healthcare is rapidly transforming the landscape of medical research and patient care. The integration of bioinformatics tools in healthcare settings enables the analysis of vast amounts of biological data, aiding in the identification of disease markers and the development of personalized treatment plans. With the advent of precision medicine, bioinformatics is playing a crucial role in tailoring medical treatments to individual genetic profiles, thereby improving patient outcomes. This approach not only enhances the efficacy of treatments but also reduces the risk of adverse drug reactions. As healthcare systems increasingly adopt genomic data in clinical decision-making, bioinformatics is becoming an indispensable component in the quest for more effective and personalized healthcare solutions.
From a regional perspective, North America currently dominates the bioinformatics software market, accounting for the largest share due to its advanced healthcare infrastructure, significant investments in genomics research, and the presence of leading market players. Europe follows closely, driven by strong government support for life sciences research and a growing focus on digital health initiatives. The Asia Pacific re
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a compressed .sql.gz file of a MySQL database dump. The table contains the automatically extracted mentions of database and software resource names as extracted by bioNerDS across the full sub-set of open-access full-text PubMed Central articles. Each matched resource is identified by name, text offsets and "normalised" name, and also includes details of the rules from which the name was matched. This dataset is one of the primary research contributions of my PhD work, and a paper currently being finalised for submission to PLoS Computational Biology.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global bioinformatics software market size was valued at approximately USD 10 billion in 2023, and it is projected to reach around USD 25 billion by 2032, growing at a robust CAGR of 11% during the forecast period. This remarkable growth is fueled by the increased application of bioinformatics in drug discovery and development, the rising demand for personalized medicine, and the ongoing advancements in sequencing technologies. The convergence of biology and information technology has led to the optimization of biological data management, propelling the market's expansion as it transforms the landscape of biotechnology and pharmaceutical research. The rapid integration of artificial intelligence and machine learning techniques to process complex biological data further accentuates the growth trajectory of this market.
An essential growth factor for the bioinformatics software market is the burgeoning demand for sequencing technologies. The decreasing cost of sequencing has led to a massive increase in the volume of genomic data generated, necessitating advanced software solutions to manage and interpret this data efficiently. This demand is particularly evident in genomics and proteomics, where bioinformatics software plays a critical role in analyzing and visualizing large datasets. Additionally, the adoption of cloud computing in bioinformatics offers scalable resources and cost-effective solutions for data storage and processing, further fueling market growth. The increasing collaboration between research institutions and software companies to develop innovative bioinformatics tools is also contributing positively to market expansion.
Another significant driver is the growth of personalized medicine, which relies heavily on bioinformatics for the analysis of individual genetic information to tailor therapeutic strategies. As healthcare systems worldwide move towards precision medicine, the demand for bioinformatics software that can integrate genetic, phenotypic, and environmental data becomes more pronounced. This trend is not only transforming patient care but also significantly impacting drug development processes, as pharmaceutical companies aim to create more effective and targeted therapies. The strategic partnerships and collaborations between biotech firms and bioinformatics software providers are critical in advancing personalized medicine and enhancing patient outcomes.
The increasing prevalence of complex diseases such as cancer and neurological disorders necessitates comprehensive research efforts, driving the need for robust bioinformatics software. These diseases require multi-omics approaches for better understanding, diagnosis, and treatment, where bioinformatics tools are indispensable. The ongoing research and development activities in this area, supported by government funding and private investments, are fostering innovation in bioinformatics solutions. Furthermore, the development of user-friendly and intuitive software interfaces is expanding the market beyond specialized research labs to include clinical settings and hospitals, broadening the potential user base and enhancing market penetration.
From a regional perspective, North America currently leads the bioinformatics software market, thanks to its advanced technological infrastructure, significant investment in healthcare R&D, and the presence of numerous key market players. The region accounted for the largest market share in 2023 and is expected to maintain its dominance throughout the forecast period. Meanwhile, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by increasing investments in biotechnology and pharmaceutical research, expanding healthcare infrastructure, and the rising adoption of bioinformatics in emerging economies like China and India. Europe's market growth is also significant, supported by substantial funding for genomic research and a strong focus on precision medicine initiatives.
Lifesciences Data Mining and Visualization are becoming increasingly vital in the bioinformatics software market. As the volume of biological data continues to grow exponentially, the need for sophisticated tools to mine and visualize this data is paramount. These tools enable researchers to uncover hidden patterns and insights from complex datasets, facilitating breakthroughs in genomics, proteomics, and other life sciences fields. The integration of advanced data mining techniques with visualization capabilities allows for a more intuitive
Facebook
Twitter
As per our latest research, the global Structural Bioinformatics Software market size reached USD 1.48 billion in 2024, demonstrating robust demand across biopharmaceutical research, drug discovery, and academic sectors. The market is experiencing a healthy compound annual growth rate (CAGR) of 10.2% and is forecasted to attain a value of USD 3.58 billion by 2033. This growth can be attributed to the rapid advancements in computational biology, the increasing adoption of artificial intelligence and machine learning in protein structure prediction, and the surge in drug development activities globally.
One of the primary growth drivers for the Structural Bioinformatics Software market is the intensifying focus on precision medicine and personalized therapeutics. With the global pharmaceutical industry placing increasing emphasis on developing targeted therapies, there is a critical need for advanced software tools that can model, predict, and analyze complex biomolecular structures. These tools are pivotal for understanding protein-ligand interactions, predicting the effects of mutations, and identifying novel druggable targets. The integration of high-throughput sequencing data with structural bioinformatics platforms has further accelerated the pace of discovery, enabling researchers to move from raw data to actionable insights with unprecedented speed and accuracy.
Another significant factor propelling the market is the evolution of computational power and cloud-based infrastructure. The exponential increase in available biological data, coupled with the complexity of protein folding and molecular dynamics simulations, demands scalable and high-performance computing resources. Cloud-based structural bioinformatics solutions have democratized access to sophisticated algorithms and databases, making them available to a broader range of users, including smaller biotech firms and academic labs. This shift has not only reduced the barriers to entry but also fostered greater collaboration and innovation in the field, as researchers can now share data, workflows, and results seamlessly across geographies.
The market is also benefiting from heightened collaboration between academia, research organizations, and industry players. Public-private partnerships, government funding initiatives, and global consortia are fueling the development of next-generation structural bioinformatics platforms. These collaborations are focused on addressing critical challenges such as protein structure prediction, functional annotation, and molecular modeling. The emergence of open-source software and community-driven databases has further enriched the ecosystem, providing researchers with access to a wealth of curated data and cutting-edge analytical tools. As the field continues to evolve, the synergy between computational advancements and experimental validation is expected to drive the adoption of structural bioinformatics software across diverse end-user segments.
Structure-Based Drug Design is an integral component of the drug discovery process, leveraging the detailed knowledge of the three-dimensional structure of biological targets to design more effective therapeutic agents. This approach utilizes advanced computational tools to model the interactions between drug candidates and their targets, allowing researchers to optimize binding affinity and selectivity. By focusing on the structural aspects of drug-target interactions, Structure-Based Drug Design enhances the precision and efficiency of the drug development pipeline, ultimately leading to the creation of more targeted and effective treatments. The integration of this methodology with structural bioinformatics software is revolutionizing the way researchers approach complex biological challenges, offering new avenues for innovation and discovery.
From a regional perspective, North America remains the dominant market for structural bioinformatics software, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific region. The robust presence of leading pharmaceutical and biotechnology companies, coupled with significant investments in research and development, has established North America as a global innovation hub. Meanwhi
Facebook
Twitter
According to our latest research, the global translational bioinformatics market size reached USD 4.2 billion in 2024, driven by the increasing integration of computational technologies in biomedical research and healthcare. The market is exhibiting robust growth with a compound annual growth rate (CAGR) of 11.6% from 2025 to 2033. By 2033, the market is forecasted to reach USD 11.4 billion, reflecting the rising demand for data-driven solutions in drug discovery, clinical diagnostics, and personalized medicine. This surge is primarily fueled by the growing adoption of genomics and proteomics in clinical settings, the expansion of precision medicine initiatives, and the escalating need for advanced bioinformatics platforms to handle complex biological datasets.
One of the primary growth factors for the translational bioinformatics market is the exponential increase in biomedical data generated from next-generation sequencing (NGS), genomics, and proteomics research. The need to analyze, interpret, and translate this vast amount of data into clinically actionable insights has made translational bioinformatics solutions indispensable. Healthcare providers and research institutions are increasingly leveraging sophisticated bioinformatics software and platforms to accelerate drug discovery, identify novel biomarkers, and develop targeted therapies. The integration of artificial intelligence (AI) and machine learning (ML) algorithms into bioinformatics tools further enhances the ability to extract meaningful patterns from multidimensional datasets, thereby supporting the precision medicine paradigm and improving patient outcomes.
Another critical driver for the translational bioinformatics market is the growing emphasis on personalized medicine and tailored therapeutics. With the advent of genomics and proteomics, there is a heightened focus on individualized treatment strategies that consider a patientÂ’s genetic makeup, lifestyle, and environmental factors. Translational bioinformatics bridges the gap between basic research and clinical application by providing the computational infrastructure necessary to translate omics data into personalized diagnostics and therapies. The market is also benefiting from increased investments in biomedical research, government initiatives promoting precision healthcare, and strategic collaborations between pharmaceutical companies, academic institutions, and technology providers. These collaborations are fostering innovation and accelerating the adoption of translational bioinformatics solutions across the healthcare ecosystem.
The translational bioinformatics market is also witnessing significant growth due to the rising prevalence of chronic diseases and the urgent need for innovative diagnostic and therapeutic approaches. Chronic conditions such as cancer, cardiovascular diseases, and neurological disorders require comprehensive molecular profiling to inform treatment decisions. Translational bioinformatics enables the integration of diverse data sources, including genomics, proteomics, clinical records, and imaging data, to facilitate a holistic understanding of disease mechanisms. This integrative approach supports the development of novel biomarkers, enhances the efficiency of clinical trials, and expedites the translation of research findings into clinical practice. As a result, healthcare organizations are increasingly adopting translational bioinformatics solutions to improve disease management and patient care.
As the translational bioinformatics market continues to evolve, the concept of Bioinformatics Pipelines as a Service is gaining traction. These pipelines provide a comprehensive framework for processing and analyzing biological data, offering a seamless integration of various bioinformatics tools and resources. By leveraging cloud-based infrastructures, these services enable researchers to automate complex workflows, enhance data reproducibility, and scale their analyses according to project needs. The flexibility and efficiency of Bioinformatics Pipelines as a Service are particularly beneficial for organizations with limited in-house bioinformatics expertise, allowing them to focus on their core research objectives while accessing cutting-edge computational resources. This approach not only accelerates the pace of discovery but also democratizes access to advanced bioinformatics capabilities
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Modern research is increasingly data-driven and reliant on bioinformatics software. Publication is a common way of introducing new software, but not all bioinformatics tools get published. Giving there are competing tools, it is important not merely to find the appropriate software, but have a metric for judging its usefulness. Journal's impact factor has been shown to be a poor predictor of software popularity; consequently, focusing on publications in high-impact journals limits user's choices in finding useful bioinformatics tools. Free and open source software repositories on popular code sharing platforms such as GitHub provide another venue to follow the latest bioinformatics trends. The open source component of GitHub allows users to bookmark and copy repositories that are most useful to them. This Perspective aims to demonstrate the utility of GitHub “stars,” “watchers,” and “forks” (GitHub statistics) as a measure of software impact. We compiled lists of impactful bioinformatics software and analyzed commonly used impact metrics and GitHub statistics of 50 genomics-oriented bioinformatics tools. We present examples of community-selected best bioinformatics resources and show that GitHub statistics are distinct from the journal's impact factor (JIF), citation counts, and alternative metrics (Altmetrics, CiteScore) in capturing the level of community attention. We suggest the use of GitHub statistics as an unbiased measure of the usability of bioinformatics software complementing the traditional impact metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Appendix N: The website link of the bioinformatics tools and online resources used in this thesis were summarised
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1. List of URLs for all resources.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Structural Bioinformatics Software market size reached USD 1.34 billion in 2024, driven by the rapid advancements in computational biology and increasing demand for precision medicine. The market is projected to grow at a robust CAGR of 10.7% from 2025 to 2033, reaching an estimated USD 3.17 billion by 2033. This remarkable growth is largely attributed to the expanding scope of bioinformatics in drug discovery, the integration of artificial intelligence (AI) in structural analysis, and the growing emphasis on data-driven research in life sciences. As per the latest research, the market is witnessing significant investments from both public and private sectors, further propelling technological innovation and adoption across various end-user segments.
The surge in the Structural Bioinformatics Software market is fundamentally driven by the increasing complexity of biological data and the necessity for advanced tools to interpret and analyze these datasets. With the advent of high-throughput technologies such as next-generation sequencing (NGS) and cryo-electron microscopy, researchers are generating unprecedented volumes of structural data. This deluge of information necessitates sophisticated software solutions capable of visualizing, modeling, and analyzing complex biomolecular structures. Moreover, the integration of machine learning algorithms and cloud computing has made it easier to handle large datasets, accelerating the pace of drug discovery and protein engineering. The growing collaboration between academic institutions and pharmaceutical companies is also fostering the development of innovative bioinformatics platforms tailored to specific research needs.
Another key growth factor for the Structural Bioinformatics Software market is the increasing focus on personalized medicine and targeted therapeutics. As healthcare shifts towards more individualized treatment approaches, there is a heightened demand for software that can accurately predict protein-ligand interactions, model disease-related mutations, and facilitate the design of novel therapeutics. This trend is particularly evident in oncology, rare diseases, and infectious diseases, where understanding the structural basis of biological processes is critical for developing effective treatments. The market is also benefiting from government initiatives aimed at supporting bioinformatics research, such as funding for genomics projects and the establishment of national bioinformatics infrastructures. These efforts are not only advancing scientific discovery but also creating a favorable environment for software vendors to expand their offerings.
Furthermore, the Structural Bioinformatics Software market is experiencing significant traction due to the globalization of research and the increasing adoption of cloud-based deployment models. Cloud computing offers scalable and cost-effective solutions, enabling researchers from different geographical locations to collaborate seamlessly and access computational resources without heavy upfront investments. This has democratized access to advanced bioinformatics tools, particularly in emerging economies where infrastructure constraints have traditionally limited research capabilities. The rise of open-source software and community-driven platforms is also contributing to market growth, providing researchers with customizable and interoperable solutions that can be integrated into diverse workflows. As the field continues to evolve, the emphasis on interoperability, data security, and user-friendly interfaces will further shape the competitive landscape.
Regionally, North America continues to dominate the Structural Bioinformatics Software market, accounting for the largest share due to its well-established biotechnology and pharmaceutical industries, robust research funding, and early adoption of advanced technologies. Europe follows closely, supported by strong academic research and collaborative initiatives across countries. The Asia Pacific region is emerging as a high-growth market, fueled by increasing investments in life sciences, expanding healthcare infrastructure, and a growing pool of skilled bioinformatics professionals. Latin America and the Middle East & Africa are also witnessing gradual adoption, primarily driven by government-led initiatives and partnerships with global research organizations. The regional dynamics are expected to evolve further as international collaborations and technology transfer init
Facebook
TwitterBioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Facebook
TwitterDeveloping new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through uniform resource locators (URLs) published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51% were deemed “easy to install,” and 28% of the tools failed to be installed at all because of problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process. We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Public databases are essential to the development of multi-omics resources. The amount of data created by biological technologies needs a systematic and organized form of storage, that can quickly be accessed, and managed. This is the objective of a biological database. Here, we present an overview of human databases with web applications. The databases and tools allow the search of biological sequences, genes and genomes, gene expression patterns, epigenetic variation, protein-protein interactions, variant frequency, regulatory elements, and comparative analysis between human and model organisms. Our goal is to provide an opportunity for exploring large datasets and analyzing the data for users with little or no programming skills. Public user-friendly web-based databases facilitate data mining and the search for information applicable to healthcare professionals. Besides, biological databases are essential to improve biomedical search sensitivity and efficiency and merge multiple datasets needed to share data and build global initiatives for the diagnosis, prognosis, and discovery of new treatments for genetic diseases. To show the databases at work, we present a a case study using ACE2 as example of a gene to be investigated. The analysis and the complete list of databases is available in the following website .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A variety of teams and individuals are involved in biocuration worldwide. However, they may not self-identify as biocurators per se, as they may be unaware of biocuration as a career path or because biocuration is only part of their role. The lack of a clear, up-to-date profile of biocuration creates challenges for organisations like ELIXIR, the ISB and GOBLET to systematically support biocurators and for biocurators themselves to develop their own careers. Therefore, the ELIXIR Training Platform launched an Implementation Study in order to i) identify communities of biocurators, ii) map the type of curation work being done, iii) assess biocuration training, and iv) draw a picture of biocuration career development. To achieve the goals of the study we carried out a global survey about the nature of biocuration work, the tools and resources that are used, training that has been received and additional training needs. To examine these topics in more detail we ran workshop-based discussions at ISB Biocuration Conference 2019 and the ELIXIR All Hands Meeting 2019. We also had guided conversations with selected people from the EMBL-European Bioinformatics Institute.
The following files represent the underlying data for this study:
Pilot survey questions.docx (questionnaire sent to staff of Wellcome Genome Campus)
Questions to guide conversations with biocurators.docx (conversation guide outlines the type of questions to be asked)
Global survey questions.docx (globally disseminated questionnaire revised on the basis of the pilot survey)
Themed summary of the responses given in the guided conversations – deidentified.docx (de-identified outcomes of the guided conversations)
Information that may lead to the identification of respondents has been redacted.
Global_survey_deidentified.xlsx (de-identified responses to the global survey)
This file includes de-identified responses to the survey questions. Responses that may lead to the identification of respondents have been redacted. Free text responses to questions 6, 14 and 15 have been categorised into tasks, topics and skills, respectively.
Bar graphs of global survey.xlsx (quantitative responses to multiple choice questions in the global survey. For some questions, respondents could choose more than one option)
Tools and resources.xlsx (Tools and resources used for biocuration work and listed by the respondents of the global survey)
Biocuration training course list.xlsx (formal training courses listed by respondents of the global survey)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The file is a binary alignment file (BAM file) of the illumina sequencing data of sample Psae provided as test data for the publication of the tool SASpector.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global veterinary bioinformatics solutions market size reached USD 1.48 billion in 2024, as per our latest research, and is projected to grow at a robust CAGR of 12.6% from 2025 to 2033, reaching a forecasted value of USD 4.34 billion by 2033. The market's expansion is primarily driven by the increasing prevalence of zoonotic diseases, rising adoption of precision medicine in veterinary care, and growing investments in animal health research. The integration of advanced bioinformatics tools in veterinary diagnostics and research is enabling more accurate disease detection, more efficient drug discovery, and improved animal health management, fueling the growth trajectory of the veterinary bioinformatics solutions market worldwide.
One of the most significant growth factors for the veterinary bioinformatics solutions market is the rising incidence of zoonotic diseases and the growing awareness of their impact on public health. As outbreaks such as avian influenza, rabies, and other animal-borne illnesses continue to pose threats to both animal and human populations, the need for advanced bioinformatics tools to analyze and interpret complex biological data has never been greater. Governments and regulatory bodies across the globe are increasingly mandating surveillance and diagnostic programs for early detection and control of these diseases, which necessitates the adoption of sophisticated bioinformatics platforms. Furthermore, the integration of next-generation sequencing (NGS) and high-throughput data analytics is allowing veterinary professionals to identify pathogens with greater precision, supporting proactive measures and timely interventions.
Another driving force behind the market's growth is the expanding application of genomics and precision medicine in veterinary sciences. The ability to analyze genetic information at a granular level is transforming the way veterinarians approach disease management, breeding, and drug development. Bioinformatics solutions are pivotal in processing and interpreting vast datasets generated from genomic, proteomic, and metabolomic studies, enabling tailored healthcare strategies for both companion and livestock animals. This personalized approach not only enhances treatment outcomes but also contributes to improved animal welfare and productivity. The increasing use of bioinformatics in veterinary research is also accelerating the development of novel therapeutics and vaccines, further propelling market demand.
The market is also benefitting from growing investments in animal health research and the rising adoption of digital technologies in veterinary practices. Pharmaceutical companies, research institutes, and academic organizations are allocating substantial resources to develop innovative bioinformatics tools and platforms tailored for veterinary applications. The surge in collaborations between veterinary clinics, universities, and technology providers is fostering the development of integrated solutions that streamline data management, facilitate real-time diagnostics, and enable evidence-based decision-making. The ongoing digital transformation in the veterinary sector, coupled with increasing awareness about the benefits of bioinformatics, is expected to sustain the market's upward momentum over the coming years.
From a regional perspective, North America currently dominates the veterinary bioinformatics solutions market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of advanced veterinary healthcare infrastructure, high adoption of digital solutions, and a strong focus on research and development are key factors contributing to North America's leadership position. Meanwhile, Asia Pacific is emerging as a high-growth region, driven by the increasing livestock population, rising pet ownership, and growing investments in animal health technologies. The market in Latin America and the Middle East & Africa is also witnessing steady growth, supported by improving veterinary services and government initiatives to enhance animal health surveillance and disease management.
The veterinary bioinformatics solutions market by component is segmented into software and services, each playing a critical role in shaping the industry's landscape. The software segment comprises various platforms and tools that faci
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the global bioinformatics market size reached USD 16.2 billion in 2024, exhibiting robust expansion driven by growing demand across various life science applications. The market is anticipated to maintain a strong momentum, registering a CAGR of 12.6% during the forecast period, and is projected to achieve a value of USD 47.3 billion by 2033. This significant growth is primarily fueled by advancements in genomics and proteomics, the proliferation of high-throughput sequencing technologies, and the rising integration of artificial intelligence and machine learning in biological data analysis. As per our latest research, the increasing need for efficient data management and analysis in drug discovery, personalized medicine, and agricultural biotechnology continues to propel the global bioinformatics market forward.
One of the core growth drivers for the bioinformatics market is the exponential rise in biological data generation, particularly from next-generation sequencing (NGS) platforms. As sequencing costs have plummeted and throughput has soared, researchers and organizations across academia, healthcare, and agriculture are generating vast amounts of genomic, proteomic, and metabolomic data. This deluge of information necessitates robust bioinformatics tools and platforms for storage, retrieval, analysis, and interpretation. The capability to translate raw biological data into actionable insights for disease research, crop improvement, and environmental monitoring has made bioinformatics indispensable. Furthermore, collaborations between biotechnology companies, academic institutions, and IT firms are fostering innovation in software and algorithm development, amplifying the market’s growth trajectory.
Another significant growth factor is the integration of artificial intelligence (AI) and machine learning (ML) within bioinformatics platforms. AI-driven analytics are revolutionizing the way researchers interpret complex biological datasets, enabling more accurate predictions in genomics, drug discovery, and personalized medicine. The ability of ML algorithms to identify patterns, predict molecular interactions, and automate data processing is enhancing the efficiency and reliability of bioinformatics workflows. Moreover, the increasing adoption of cloud-based bioinformatics solutions is democratizing access to powerful computational resources, allowing small and medium enterprises (SMEs) and academic labs to leverage advanced analytics without heavy infrastructure investments. These technological advancements are expected to further accelerate market expansion over the coming years.
The growing focus on personalized medicine and precision healthcare is also catalyzing the demand for bioinformatics. Healthcare providers and pharmaceutical companies are increasingly utilizing bioinformatics tools to tailor treatments based on individual genetic profiles, leading to improved patient outcomes and reduced adverse effects. In drug discovery, bioinformatics accelerates target identification, biomarker discovery, and candidate screening, shortening development timelines and reducing costs. Furthermore, bioinformatics is playing a pivotal role in agricultural biotechnology, helping researchers develop genetically modified crops with enhanced traits, improved yield, and resistance to diseases. The convergence of these diverse applications underscores the strategic importance of bioinformatics across multiple sectors.
From a regional perspective, North America continues to lead the global bioinformatics market, supported by a well-established biotechnology industry, significant R&D investments, and favorable government initiatives. The United States, in particular, is home to several leading bioinformatics companies and research institutions, driving innovation and adoption. Europe follows closely, with strong contributions from countries like Germany, the UK, and France, where collaborative research projects and public-private partnerships are prevalent. Meanwhile, the Asia Pacific region is witnessing the fastest growth, propelled by expanding genomics research, increasing healthcare expenditures, and a surge in government funding for life science initiatives, particularly in China, India, and Japan.
The product & service segment of the bioinformatics market is broadly categorized into software, hardware, and
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 3.5(USD Billion) |
| MARKET SIZE 2025 | 3.99(USD Billion) |
| MARKET SIZE 2035 | 15.0(USD Billion) |
| SEGMENTS COVERED | Application, Service Model, End Use, Deployment Model, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Data accessibility and sharing, Cost efficiency and scalability, Enhanced computational power, Collaboration and integration opportunities, Advanced data analytics capabilities |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Merck KGaA, Agilent Technologies, DNASTAR, Twist Bioscience, BioRad Laboratories, Qiagen, Ginkgo Bioworks, Thermo Fisher Scientific, Synlogic, Roche, Bioduro, Zymergen, Genomatix, PerkinElmer, Illumina, Abbott Laboratories, Boehringer Ingelheim |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Enhanced data storage solutions, Advanced bioinformatics tools development, Scalable computing resources availability, Collaborative research platforms integration, Real-time data analysis capabilities |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 14.2% (2025 - 2035) |
Facebook
TwitterAttribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.