100+ datasets found
  1. C

    Bioinformatics for Researchers in Life Sciences: Tools and Learning...

    • data.iadb.org
    csv, pdf
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IDB Datasets (2025). Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources [Dataset]. http://doi.org/10.60966/kwvb-wr19
    Explore at:
    csv(355108), pdf(2989058), csv(276253)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    IDB Datasets
    License

    Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Jan 1, 2021
    Description

    The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.

  2. c

    Global Bioinformatics Service Market Report 2025 Edition, Market Size,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Bioinformatics Service Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/bioinformatics-service-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the Global Bioinformatics Services Market Size was USD XX Billion in 2023 and is set to achieve a market size of USD XX Billion by the end of 2031 growing at a CAGR of XX% from 2024 to 2031.

    • The global Bioinformatics services Market will expand significantly by XX% CAGR between 2024 and 2031.

    • Based on technology, Because of the growing number of platform applications and the need for improved tools for drug development, the bioinformatics platforms segment dominated the market.

    • In terms of service type, The sequencing services segment held the largest share and is anticipated to grow over the coming years

    • Based on application, The genomic segment dominated the bioinformatics market

    • Based on End-user, academic institutes and research centers segment hold the largest share.

    • Based on speciality segment, The medical bioinformatics segment holds the large share and is anticipated to expand at a substantial CAGR during the forecast period.

    • The North America region accounted for the highest market share in the Global Bioinformatics Services Market. CURRENT SCENARIO OF THE BIOINFORMATICS SERVICES

    Driving Factors of the Bioinformatics Services Market

    Expansive uses of bioinformatics across multiple sectors is propelling the market's growth.
    

    Several industries, such as the food, bioremediation, agriculture, forensics, and consumer industries, are also using bioinformatics services to improve the quality of their products and supply chain processes. Companies in a variety of sectors are rapidly utilizing bioinformatics services such as data integration, manipulation, lead generation, data management, in silico analysis, and advanced knowledge discovery.

    • Bioinformatics Approaches in Food Sciences

    In order to meet the needs of food production, food processing, enhancing the quality and nutritional content of food sources, and many other areas, bioinformatics plays a significant role in forecasting and evaluating the intended and undesired impacts of microorganisms on food, genomes, and proteomics research. Furthermore, bioinformatics techniques can be applied to produce crops with high yields and resistance to disease, among other desirable qualities. Additionally, there are numerous databases with information about food, including its components, nutritional value, chemistry, and biology.

    Genome Canada is proud to partner with five Institutes where there are five funding pools within this opportunity and Genome Canada is partnering on the Bioinformatics, Computational Biology and Health Data Sciences pool. (Source:https://genomecanada.ca/genome-canada-partners-with-cihr-to-launch-health-research-training-platform-2024-25/)

    • Bioinformatics in agriculture

    Bioinformatics is becoming more and more crucial in the gathering, storing, and processing of genomic data in the field of agricultural genomics, or agri-genomics. Generally referred to as agri-informatics, some of the various applications of bioinformatics tools and methods in agriculture focus on improving plant resistance against biotic and abiotic stressors as well as enhancing the nutritional quality in depleted soils. Beyond these uses, computer software-assisted gene discovery has enabled researchers to create focused strategies for seed quality enhancement, incorporate extra micronutrients into plants for improved human health, and create plants with phytoremediation potential.

    India/UK-based Agri-Genomics startup, Piatrika Biosystems has raised $1.2 Million in a seed round led by Ankur Capital. The company is bringing sustainable seeds and agri chemicals to market faster and cheaper. The investment will be used to build a strong Product Development team, also for more profound research, and to accelerate the productionising and commercialization of MVP. (Source:https://pressroom.icrisat.org/agri-genomics-startup-piatrika-biosystems-raises-12-million-in-seed-funding-led-by-ankur-capital)

    This expansion in the application areas of bioinformatics services is likely to drive the overall market growth. Bioinformatics services such as data integration, manipulation, lead discovery, data management, in silico analysis, and advanced knowledge discovery are increasingly being adopted by companies across various industries. ...

  3. d

    Raw motif mapping bedfile data and model training set class probabilities

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phillip Davis (2025). Raw motif mapping bedfile data and model training set class probabilities [Dataset]. http://doi.org/10.5061/dryad.tdz08kq3w
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Phillip Davis
    Time period covered
    Jan 1, 2023
    Description

    Leveraging prior viral genome sequencing data to make predictions on whether an unknown, emergent virus harbors a ‘phenotype-of-concern’ has been a long-sought goal of genomic epidemiology. A predictive phenotype model built from nucleotide-level information alone is challenging with respect to RNA viruses due to the ultra-high intra-sequence variance of their genomes, even within closely related clades. We developed a degenerate k-mer method to accommodate this high intra-sequence variation of RNA virus genomes for modeling frameworks. By leveraging a taxonomy-guided ‘group-shuffle-split’ cross validation paradigm on complete coronavirus assemblies from prior to October 2018, we trained multiple regularized logistic regression classifiers at the nucleotide k-mer level. We demonstrate the feasibility of this method by finding models accurately predicting withheld SARS-CoV-2 genome sequences as human pathogens and accurately predicting withheld Swine Acute Diarrhea Syndrome coronavirus (...

  4. B

    Bioinformatics Platforms Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Bioinformatics Platforms Market Report [Dataset]. https://www.datainsightsmarket.com/reports/bioinformatics-platforms-market-7647
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Bioinformatics Platforms Market market was valued at USD 16.36 Million in 2023 and is projected to reach USD 27.93 Million by 2032, with an expected CAGR of 7.94% during the forecast period. Recent developments include: In June 2022, California's biotechnology research startup LatchBio launched an end-to-end bioinformatics platform for handling big biotech data to accelerate scientific discovery., In March 2022, ARUP launched Rio, a bioinformatics pipeline and analytics platform for better, faster next-generation sequencing test results.. Key drivers for this market are: Increasing Demand for Nucleic Acid and Protein Sequencing, Increasing Initiatives from Governments and Private Organizations; Accelerating Growth of Proteomics and Genomics; Increasing Research on Molecular Biology and Drug Discovery. Potential restraints include: Lack of Well-defined Standards and Common Data Formats for Integration of Data, Data Complexity Concerns and Lack of User-friendly Tools. Notable trends are: Sequence Analysis Platform Segment is Expected Hold a Significant Share Over the Forecast Period.

  5. f

    Data from: Advancing computational biology and bioinformatics research...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Sep 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonchhe, Anup; Su, Andrew I.; Natoli, Ted; Macaluso, N. J. Maximilian; Briney, Bryan; Blasco, Andrea; Narayan, Rajiv; Lakhani, Karim R.; Paik, Jin H.; Endres, Michael G.; Sergeev, Rinat A.; Wu, Chunlei; Subramanian, Aravind (2019). Advancing computational biology and bioinformatics research through open innovation competitions [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000064443
    Explore at:
    Dataset updated
    Sep 27, 2019
    Authors
    Jonchhe, Anup; Su, Andrew I.; Natoli, Ted; Macaluso, N. J. Maximilian; Briney, Bryan; Blasco, Andrea; Narayan, Rajiv; Lakhani, Karim R.; Paik, Jin H.; Endres, Michael G.; Sergeev, Rinat A.; Wu, Chunlei; Subramanian, Aravind
    Description

    Open data science and algorithm development competitions offer a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research in which the use of competitions has yielded significant performance gains over established algorithms. These include algorithms for antibody clustering, imputing gene expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these competitions are then examined with respect to their utility and the prospects for implementation in the field. We present the decision process and competition design considerations that lead to these successful outcomes as a model for researchers who want to use competitions and non-domain crowds as collaborators to further their research.

  6. Data Object 1-1 (Supplemental Data 1-S1)

    • figshare.com
    xlsx
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colbie Reed (2023). Data Object 1-1 (Supplemental Data 1-S1) [Dataset]. http://doi.org/10.6084/m9.figshare.24548935.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Colbie Reed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Supplemental Data 1-S1. Timeline of important events shaping contemporary bioinformatics and comparative genomics. Timeline is not intended to be absolutely comprehensive of each of the observed fields, their respective histories. See footnotes for key review publications, sources in addition to those listed in Reference column. Field of contributions are color-coded accordingly: purple= computer science/engineering, blue= legislation/government action, biology= green, economic/markets= orange, academic institution= pink

  7. q

    The Network for Integrating Bioinformatics into Life Sciences Education...

    • qubeshub.org
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne Rosenwald; Elizabeth Dinsdale; William Morgan; Mark Pauley; William Tapprich; Eric Triplett; Jason Williams (2020). The Network for Integrating Bioinformatics into Life Sciences Education (NIBLSE): Barriers to Integration [Dataset]. http://doi.org/10.25334/NHB4-X766
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset provided by
    QUBES
    Authors
    Anne Rosenwald; Elizabeth Dinsdale; William Morgan; Mark Pauley; William Tapprich; Eric Triplett; Jason Williams
    Description

    The Network for Integrating Bioinformatics into Life Sciences Education (NIBLSE) seeks to promote the use of bioinformatics and data science as a way to teach biology.

  8. B

    Bioinformatics Cloud Platform Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Bioinformatics Cloud Platform Report [Dataset]. https://www.archivemarketresearch.com/reports/bioinformatics-cloud-platform-58816
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Bioinformatics Cloud Platform market is booming, projected to reach $5 billion by 2025 and growing at a 20% CAGR. Driven by genomics research and personalized medicine, this market offers scalable solutions for big data analysis. Learn about key trends, drivers, and major players shaping this dynamic sector.

  9. e

    Biological Data

    • paper.erudition.co.in
    html
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Biological Data [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering-artificial-intelligence-and-machine-learning/7/bioinformatics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 11, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Biological Data of Bioinformatics, 7th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)

  10. Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Bioinformatics Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/bioinformatics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    France, United States, Germany, Europe, United Kingdom, North America, Canada
    Description

    Snapshot img

    Bioinformatics Market Size 2025-2029

    The bioinformatics market size is valued to increase by USD 15.98 billion, at a CAGR of 17.4% from 2024 to 2029. Reduction in cost of genetic sequencing will drive the bioinformatics market.

    Market Insights

    North America dominated the market and accounted for a 43% growth during the 2025-2029.
    By Application - Molecular phylogenetics segment was valued at USD 4.48 billion in 2023
    By Product - Platforms segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 309.88 million 
    Market Future Opportunities 2024: USD 15978.00 million
    CAGR from 2024 to 2029 : 17.4%
    

    Market Summary

    The market is a dynamic and evolving field that plays a pivotal role in advancing scientific research and innovation in various industries, including healthcare, agriculture, and academia. One of the primary drivers of this market's growth is the rapid reduction in the cost of genetic sequencing, making it increasingly accessible to researchers and organizations worldwide. This affordability has led to an influx of large-scale genomic data, necessitating the development of sophisticated bioinformatics tools for Next-Generation Sequencing (NGS) data analysis. Another significant trend in the market is the shortage of trained laboratory professionals capable of handling and interpreting complex genomic data. This skills gap creates a demand for user-friendly bioinformatics software and services that can streamline data analysis and interpretation, enabling researchers to focus on scientific discovery rather than data processing. For instance, a leading pharmaceutical company could leverage bioinformatics tools to optimize its drug discovery pipeline by analyzing large genomic datasets to identify potential drug targets and predict their efficacy. By integrating these tools into its workflow, the company can reduce the time and cost associated with traditional drug discovery methods, ultimately bringing new therapies to market more efficiently. Despite its numerous benefits, the market faces challenges such as data security and privacy concerns, data standardization, and the need for interoperability between different software platforms. Addressing these challenges will require collaboration between industry stakeholders, regulatory bodies, and academic institutions to establish best practices and develop standardized protocols for data sharing and analysis.

    What will be the size of the Bioinformatics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free SampleBioinformatics, a dynamic and evolving market, is witnessing significant growth as businesses increasingly rely on high-performance computing, gene annotation, and bioinformatics software to decipher regulatory elements, gene expression regulation, and genomic variation. Machine learning algorithms, phylogenetic trees, and ontology development are integral tools for disease modeling and protein interactions. cloud computing platforms facilitate the storage and analysis of vast biological databases and sequence datas, enabling data mining techniques and statistical modeling for sequence assembly and drug discovery pipelines. Proteomic analysis, protein folding, and computational biology are crucial components of this domain, with biomedical ontologies and data integration platforms enhancing research efficiency. The integration of gene annotation and machine learning algorithms, for instance, has led to a 25% increase in accurate disease diagnosis within leading healthcare organizations. This trend underscores the importance of investing in advanced bioinformatics solutions for improved regulatory compliance, budgeting, and product strategy.

    Unpacking the Bioinformatics Market Landscape

    Bioinformatics, an essential discipline at the intersection of biology and computer science, continues to revolutionize the scientific landscape. Evolutionary bioinformatics, with its molecular dynamics simulation and systems biology approaches, enables a deeper understanding of biological processes, leading to improved ROI in research and development. For instance, next-generation sequencing technologies have reduced sequencing costs by a factor of ten, enabling genome-wide association studies and transcriptome sequencing on a previously unimaginable scale. In clinical bioinformatics, homology modeling techniques and protein-protein interaction analysis facilitate drug target identification, enhancing compliance with regulatory requirements. Phylogenetic analysis tools and comparative genomics studies contribute to the discovery of novel biomarkers and the development of personalized treatments. Bioimage informatics and proteomic data integration employ advanced sequence alignment algorithms and functional genomics tools to unlock new insights from complex

  11. G

    Bioinformatics AI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Bioinformatics AI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/bioinformatics-ai-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics AI Market Outlook



    As per our latest research, the global Bioinformatics AI market size reached USD 2.13 billion in 2024, reflecting the rapid adoption of artificial intelligence technologies across the life sciences sector. The market is experiencing robust expansion, registering a CAGR of 28.7% from 2025 to 2033. By the end of 2033, the Bioinformatics AI market is forecasted to soar to USD 17.49 billion. This remarkable growth is primarily driven by the escalating demand for advanced data analysis in genomics, proteomics, and precision medicine, as well as the increasing integration of AI into drug discovery and clinical diagnostics workflows.




    The surge in the Bioinformatics AI market is underpinned by the exponential growth of biological data, particularly genomic and proteomic datasets, generated by next-generation sequencing technologies. As the volume and complexity of omics data continue to escalate, traditional bioinformatics tools are proving inadequate for extracting actionable insights. AI-powered algorithms, especially those leveraging deep learning and natural language processing, are transforming the way researchers analyze, interpret, and visualize biological information. These technologies enable the identification of novel biomarkers, prediction of disease susceptibility, and acceleration of drug target discovery, thereby fueling the adoption of AI-driven solutions among pharmaceutical, biotechnology, and academic research institutions.




    Another key growth factor for the Bioinformatics AI market is the increasing emphasis on precision medicine and personalized healthcare. Governments and private organizations worldwide are investing heavily in initiatives aimed at tailoring medical treatments to individual genetic profiles. AI-based bioinformatics platforms facilitate the integration of multi-omics data, electronic health records, and real-world evidence to deliver personalized therapeutic recommendations. This shift towards individualized care is driving the demand for scalable, accurate, and automated AI solutions capable of supporting clinical decision-making, patient stratification, and risk assessment. Furthermore, the ongoing COVID-19 pandemic has highlighted the critical role of AI in accelerating vaccine and drug development, further propelling market growth.




    The proliferation of cloud computing and big data analytics is also playing a pivotal role in the expansion of the Bioinformatics AI market. Cloud-based platforms offer scalable infrastructure and high-performance computing capabilities, enabling researchers to process and analyze vast biological datasets with enhanced efficiency and cost-effectiveness. The availability of AI-as-a-Service (AIaaS) offerings is democratizing access to advanced bioinformatics tools, allowing smaller research labs and emerging biotech firms to leverage state-of-the-art AI technologies without significant upfront investments. This democratization is fostering innovation and collaboration across the global life sciences ecosystem, thereby accelerating the adoption of AI-driven bioinformatics solutions.



    Bioinformatics plays a pivotal role in the modern life sciences landscape, serving as the backbone for data-driven research and development. The field encompasses a wide range of computational techniques and tools designed to manage, analyze, and interpret complex biological data. As the volume of data generated by high-throughput technologies continues to grow, bioinformatics provides the necessary infrastructure to transform raw data into meaningful insights. This transformation is crucial for advancing our understanding of biological systems, identifying potential therapeutic targets, and developing novel diagnostic tools. By integrating bioinformatics with AI, researchers can enhance their ability to predict disease outcomes, personalize treatment plans, and accelerate the discovery of new drugs. The synergy between bioinformatics and AI is driving innovation across the life sciences, enabling breakthroughs that were previously unimaginable.




    From a regional perspective, North America continues to dominate the Bioinformatics AI market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The presence of leading pharmaceutical and biotechnology companies, well-established healthcare infrastructure, and signif

  12. f

    DataSheet2_Bioinformatic Teaching Resources – For Educators, by Educators –...

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ellen G. Dow; Elisha M. Wood-Charlson; Steven J. Biller; Timothy Paustian; Aaron Schirmer; Cody S. Sheik; Jason M. Whitham; Rose Krebs; Carlos C. Goller; Benjamin Allen; Zachary Crockett; Adam P. Arkin (2023). DataSheet2_Bioinformatic Teaching Resources – For Educators, by Educators – Using KBase, a Free, User-Friendly, Open Source Platform.PDF [Dataset]. http://doi.org/10.3389/feduc.2021.711535.s002
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Ellen G. Dow; Elisha M. Wood-Charlson; Steven J. Biller; Timothy Paustian; Aaron Schirmer; Cody S. Sheik; Jason M. Whitham; Rose Krebs; Carlos C. Goller; Benjamin Allen; Zachary Crockett; Adam P. Arkin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Over the past year, biology educators and staff at the U.S. Department of Energy Systems Biology Knowledgebase (KBase) initiated a collaborative effort to develop a curriculum for bioinformatics education. KBase is a free web-based platform where anyone can conduct sophisticated and reproducible bioinformatic analyses via a graphical user interface. Here, we demonstrate the utility of KBase as a platform for bioinformatics education, and present a set of modular, adaptable, and customizable instructional units for teaching concepts in Genomics, Metagenomics, Pangenomics, and Phylogenetics. Each module contains teaching resources, publicly available data, analysis tools, and Markdown capability, enabling instructors to modify the lesson as appropriate for their specific course. We present initial student survey data on the effectiveness of using KBase for teaching bioinformatic concepts, provide an example case study, and detail the utility of the platform from an instructor’s perspective. Even as in-person teaching returns, KBase will continue to work with instructors, supporting the development of new active learning curriculum modules. For anyone utilizing the platform, the growing KBase Educators Organization provides an educators network, accompanied by community-sourced guidelines, instructional templates, and peer support, for instructors wishing to use KBase within a classroom at any educational level–whether virtual or in-person.

  13. r

    International Journal of Engineering and Advanced Technology Acceptance Rate...

    • researchhelpdesk.org
    Updated May 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology Acceptance Rate - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/acceptance-rate/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    May 1, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology Acceptance Rate - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level

  14. B

    Bioinformatics Cloud Platform Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Bioinformatics Cloud Platform Report [Dataset]. https://www.archivemarketresearch.com/reports/bioinformatics-cloud-platform-58815
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Bioinformatics Cloud Platform market is booming, projected to reach $10 billion by 2033 with a 20% CAGR. Discover key trends, drivers, restraints, and leading companies shaping this rapidly evolving sector in genomics, drug discovery, and academic research. Learn more about SaaS, PaaS, and IaaS solutions.

  15. D

    Bioinformatics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Bioinformatics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-bioinformatics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bioinformatics Market Outlook



    The global bioinformatics market size was projected at $10.4 billion in 2023 and is anticipated to grow to $24.8 billion by 2032, with a compound annual growth rate (CAGR) of 10.2%. This rapid growth is primarily attributed to the increasing demand for bioinformatics tools in genomics and proteomics research, thereby enhancing data interpretation and analysis capabilities. Additionally, the surge in the adoption of cloud-based solutions and the increasing volume of biological data generated through research activities are key factors driving the market growth. Furthermore, the rising emphasis on precision medicine and personalized healthcare approaches plays a significant role in the expansion of this market.



    One of the major growth factors driving the bioinformatics market is the vast amount of biological data being generated, necessitating advanced data analysis and management tools. The advent of next-generation sequencing technologies has revolutionized genetic research, leading to exponential data generation. Bioinformatics provides the necessary computational solutions to manage, analyze, and interpret this data efficiently. Moreover, the increasing collaboration between biological scientists and computer experts is further accelerating the development of novel bioinformatics tools, enhancing their application across various domains. This interdisciplinary approach is not only improving research outcomes but also facilitating the discovery of new biological insights.



    Another significant growth driver is the rising investment in research and development in the field of genomics and proteomics. Governments and private organizations across the globe are investing heavily in life sciences research to understand complex biological processes and diseases better. These investments are expected to increase the demand for sophisticated bioinformatics tools and services. Additionally, the integration of artificial intelligence and machine learning with bioinformatics is opening new avenues for research, enabling more precise data analysis and prediction models. This technological convergence is expected to provide significant growth opportunities for the bioinformatics market during the forecast period.



    The increasing prevalence of chronic diseases and the growing need for personalized medicine are also contributing to the expansion of the bioinformatics market. Personalized medicine, which tailors healthcare to individual patients, relies heavily on bioinformatics to analyze genetic information and develop targeted therapies. As healthcare systems worldwide shift towards more personalized approaches, the demand for bioinformatics solutions is expected to rise significantly. Moreover, bioinformatics plays a crucial role in drug discovery and development processes, providing insights that accelerate the identification of potential drug targets and biomarkers.



    The role of Life Sciences Software in the bioinformatics market is becoming increasingly prominent as researchers and healthcare providers seek more sophisticated tools to manage and analyze complex biological data. These software solutions are essential for processing the vast amounts of data generated by modern research techniques, such as next-generation sequencing and mass spectrometry. By providing robust data management and analysis capabilities, Life Sciences Software enables researchers to gain deeper insights into genetic and proteomic information, facilitating the discovery of new therapeutic targets and the development of personalized medicine approaches. As the demand for precision medicine continues to grow, the importance of Life Sciences Software in bioinformatics is expected to rise, driving innovation and market expansion.



    Regionally, North America holds the largest share of the bioinformatics market due to the presence of a well-established healthcare infrastructure and significant investments in biotechnological research. The region is home to several leading bioinformatics companies and research institutions, which are at the forefront of innovation and technological advancements. Additionally, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by increasing government funding for genomics research and the growing adoption of bioinformatics in emerging economies like China and India. The expansion of biopharmaceutical industries and a rising focus on precision medicine in these regions are further contributing to market growth.



    Pro

  16. PARSING FASTA AND GENBANK FILES

    • kaggle.com
    zip
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr. Nagendra (2025). PARSING FASTA AND GENBANK FILES [Dataset]. https://www.kaggle.com/datasets/mannekuntanagendra/parsing-fasta-and-genbank-files
    Explore at:
    zip(17972831 bytes)Available download formats
    Dataset updated
    Nov 25, 2025
    Authors
    Dr. Nagendra
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset is a dedicated resource for learning how to parse core bioinformatics file formats. It contains representative samples of FASTA and GenBank files. The goal is to provide raw data for practicing essential data extraction skills. FASTA files contain sequence data, such as DNA, RNA, or protein, in a simple text format. GenBank files include detailed sequence annotations, features, and metadata. This is an ideal starting point for anyone learning Biopython or general sequence manipulation in genomics.

  17. r

    Data from: DNA metabarcoding captures subtle differences in forest beetle...

    • researchdata.edu.au
    Updated 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Susan Baker; Laurence Clarke; Christopher Burridge; Greg Jordan; Mingxin Liu; Susan Baker; Mingxin Liu; Mingxin Liu; Laurence Clarke; Greg Jordan; Christopher Burridge (2020). DNA metabarcoding captures subtle differences in forest beetle communities following disturbance [Dataset]. https://researchdata.edu.au/dna-metabarcoding-captures-following-disturbance/1676001
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    University of Tasmania, Australia
    Authors
    Susan Baker; Laurence Clarke; Christopher Burridge; Greg Jordan; Mingxin Liu; Susan Baker; Mingxin Liu; Mingxin Liu; Laurence Clarke; Greg Jordan; Christopher Burridge
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset includes all raw Miseq high-throughput sequencing data, bioinformatic pipeline and R codes that were used in the publication "Liu M, Baker SC, Burridge CP, Jordan GJ, Clarke LJ (2020) DNA metabarcoding captures subtle differences in forest beetle communities following disturbance. Restoration Ecology. 28:1475-1484. DOI:10.1111/rec.13236."

    Miseq_16S.zip - Miseq sequencing dataset for gene marker 16S, including 48 fastq files for 24 beetle bulk samples; Miseq_CO1.zip -Miseq sequencing dataset for gene marker CO1, including 46 fastq files for 23 beetle bulk samples (one sample failed to be sequenced); nfp4MBC.nf - A nextflow bioinformatic script to process Miseq datasets; nextflow.config - A configuratioin file needed when using nfp4MBC.nf; adapters_16S.zip - Adapters used to tag each of 24 beetle bulk samples for 16S, also used to process 16S Miseq dataset when using nfp4MBC.nf; adapters_CO1.zip - Adapters used to tag each of 24 beetle bulk samples for CO1, also used to process CO1 Miseq dataset when using nfp4MBC.nf; rMBC.Rmd - R markdown codes for community analyses; rMBC.zip - Datasets used in rMBC.Rmd. COI_ZOTUs_176.fasta - DNA sequences of 176 COI ZOTUs. 16S_ZOTUs_156 -DNA sequences of 156 16S ZOTUs.

  18. i

    Bioinformatics Applications using a Multi-layered Data Representation

    • ieee-dataport.org
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diogo Vieira (2025). Bioinformatics Applications using a Multi-layered Data Representation [Dataset]. https://ieee-dataport.org/documents/bioinformatics-applications-using-multi-layered-data-representation
    Explore at:
    Dataset updated
    May 25, 2025
    Authors
    Diogo Vieira
    Description

    Data for all phases of new method and results. This is the last and published version of results.

  19. r

    Data from: Spectrum analysis based method for dynamics and collective...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi-Zhen Shen; Yong-Sheng Ding; Quan Gu (2022). Spectrum analysis based method for dynamics and collective analysis of protein-protein interaction networks [Dataset]. http://doi.org/10.4225/03/5a13725619374
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Yi-Zhen Shen; Yong-Sheng Ding; Quan Gu
    Description

    The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. Generation of high-confident interaction networks formulates the first step towards the study for protein–protein interactions (PPI). A number of experimental methods, based on distinct, physical principles have been developed to identify PPI such as the yeast two-hybrid method (Y2H). In this work, we focus on one example of biological networks, namely the yeast protein interaction network (YPIN). In YPIN, we design and implement a computational model that captures the discrete and stochastic nature of protein interactions. In this model, we apply spectrum analysis method to the variance of the protein nodes which play an important role in the PPI networks, which can show the topology structure of dynamic and collective performances of PPI networks. We take YPIN, such as 48 "quasi-cliques" and 6 "quasi-bipartites" separated from 11855 yeast PPI networks with 2617 proteins, as an example and apply spectrum analysis to show the topology structure of dynamic and collective analysis of PPI networks and the performances. The obtained results may be valuable for deciphering unknown protein functions, determining protein complexes, and inventing drugs. PRIB 2008 proceedings found at: http://dx.doi.org/10.1007/978-3-540-88436-1

    Contributors: Monash University. Faculty of Information Technology. Gippsland School of Information Technology ; Chetty, Madhu ; Ahmad, Shandar ; Ngom, Alioune ; Teng, Shyh Wei ; Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB) (3rd : 2008 : Melbourne, Australia) ; Coverage: Rights: Copyright by Third IAPR International Conference on Pattern Recognition in Bioinformatics. All rights reserved.

  20. o

    QIIME 2 Tutorial Data

    • registry.opendata.aws
    Updated Jan 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caporaso Lab (2019). QIIME 2 Tutorial Data [Dataset]. https://registry.opendata.aws/qiime2/
    Explore at:
    Dataset updated
    Jan 23, 2019
    Dataset provided by
    Caporaso Lab
    Description

    QIIME 2 (pronounced “chime two”) is a microbiome multi-omics bioinformatics and data science platform that is trusted, free, open source, extensible, and community developed and supported.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
IDB Datasets (2025). Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources [Dataset]. http://doi.org/10.60966/kwvb-wr19

Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources

Explore at:
csv(355108), pdf(2989058), csv(276253)Available download formats
Dataset updated
Apr 10, 2025
Dataset provided by
IDB Datasets
License

Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically

Time period covered
Jan 1, 2020 - Jan 1, 2021
Description

The COVID-19 pandemic has shown that bioinformatics--a multidisciplinary field that combines biological knowledge with computer programming concerned with the acquisition, storage, analysis, and dissemination of biological data--has a fundamental role in scientific research strategies in all disciplines involved in fighting the virus and its variants. It aids in sequencing and annotating genomes and their observed mutations; analyzing gene and protein expression; simulation and modeling of DNA, RNA, proteins and biomolecular interactions; and mining of biological literature, among many other critical areas of research. Studies suggest that bioinformatics skills in the Latin American and Caribbean region are relatively incipient, and thus its scientific systems cannot take full advantage of the increasing availability of bioinformatic tools and data. This dataset is a catalog of bioinformatics software for researchers and professionals working in life sciences. It includes more than 300 different tools for varied uses, such as data analysis, visualization, repositories and databases, data storage services, scientific communication, marketplace and collaboration, and lab resource management. Most tools are available as web-based or desktop applications, while others are programming libraries. It also includes 10 suggested entries for other third-party repositories that could be of use.

Search
Clear search
Close search
Google apps
Main menu