39 datasets found
  1. h

    black-people-liveness-detection-video-dataset

    • huggingface.co
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2024). black-people-liveness-detection-video-dataset [Dataset]. https://huggingface.co/datasets/TrainingDataPro/black-people-liveness-detection-video-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 11, 2024
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Biometric Attack Dataset, Black People

      The similar dataset that includes all ethnicities - Anti Spoofing Real Dataset
    

    The dataset for face anti spoofing and face recognition includes images and videos of black people. The dataset helps in enchancing the performance of the model by providing wider range of data for a specific ethnic group. The videos were gathered by capturing faces of genuine individuals presenting spoofs, using facial presentations. Our dataset proposes… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/black-people-liveness-detection-video-dataset.

  2. N

    London, AR Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). London, AR Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/695f32c6-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas, London
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of London by race. It includes the population of London across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of London across relevant racial categories.

    Key observations

    The percent distribution of London population by race (across all racial categories recognized by the U.S. Census Bureau): 91.60% are white, 0.61% are Black or African American, 0.71% are Asian, 1.21% are some other race and 5.87% are multiracial.

    https://i.neilsberg.com/ch/london-ar-population-by-race.jpeg" alt="London population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the London
    • Population: The population of the racial category (excluding ethnicity) in the London is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of London total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for London Population by Race & Ethnicity. You can refer the same here

  3. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  4. Wage Gap of Black-White in USA Dataset

    • kaggle.com
    Updated Mar 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mannat Pruthi (2024). Wage Gap of Black-White in USA Dataset [Dataset]. https://www.kaggle.com/datasets/mannatpruthi/wage-gap-of-black-white-in-usa-dataset/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mannat Pruthi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset focuses on the black-white wage gap in the United States. It provides insights into the disparities in hourly wages between black and white workers, as well as different gender and subgroup breakdowns.

    The data is derived from the Economic Policy Institute’s State of Working America Data Library, a reputable source for socio-economic research and analysis.

  5. ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time

    • healthdata.gov
    • data.sfgov.org
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time [Dataset]. https://healthdata.gov/dataset/ARCHIVED-COVID-19-Testing-by-Race-Ethnicity-Over-T/ntmc-mxb8
    Explore at:
    tsv, csv, json, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.

    The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.

    When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:

    • The person was not asked about their race and ethnicity.
    • The person was asked, but refused to answer.
    • The person answered, but the testing provider did not include the person's answers in the reports.
    • The testing provider reported the person's answers in a format that could not be used by the health department.
    

    For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”

    B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."

    The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”

    If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i

  6. N

    Person County, NC Population Breakdown By Race (Excluding Ethnicity)...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Person County, NC Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/person-county-nc-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Person County, North Carolina
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Person County by race. It includes the population of Person County across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Person County across relevant racial categories.

    Key observations

    The percent distribution of Person County population by race (across all racial categories recognized by the U.S. Census Bureau): 65.68% are white, 25.47% are Black or African American, 0.59% are American Indian and Alaska Native, 0.43% are Asian, 0.01% are Native Hawaiian and other Pacific Islander, 1.40% are some other race and 6.43% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Person County
    • Population: The population of the racial category (excluding ethnicity) in the Person County is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Person County total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Person County Population by Race & Ethnicity. You can refer the same here

  7. Non-White Population in the US (Current ACS)

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Non-White Population in the US (Current ACS) [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/bd59d1d55f064d1b815997f4b6c7735f
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?

  8. U.S. poverty rate in the United States 2023, by race and ethnicity

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate in the United States 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.

  9. H

    Replication data for: Beliefs about Black White Inequality: Differences...

    • dataverse.harvard.edu
    Updated May 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anny Fenton; Ekedi Mpondo-Dika (2014). Replication data for: Beliefs about Black White Inequality: Differences among African Americans, Hispanics and Whites 1985-2010 [Dataset]. http://doi.org/10.7910/DVN/9ILJXN
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 1, 2014
    Dataset provided by
    Harvard Dataverse
    Authors
    Anny Fenton; Ekedi Mpondo-Dika
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Matthew Hunt's article, "African American, Hispanic, and White Beliefs about Black/White Inequality, 1977–2004" (ASR 2007), uses the General Social Survey to examine whether blacks, Hispanics and whites hold different beliefs about the causes of black-white inequality and whether these beliefs change over time. Based on his analyses, Hunt argues that whites privilege agency explanations relative to blacks and Hispanics while blacks focus more on discrimination and mixed structural-agency explanations compared to whites and Hispanics. Our analyses explore whether Hunt's conclusions change based on two improvements: (1) we use multiple imputation to address high levels of missing data instead of Hunt's approach of listwise deletion and (2) we expand the data set to include more recent years to examine whether events that occurred post 2008 (for instance, the recession and successful presidential candidacy of Barak Obama, a black man) influenced beliefs about black-white inequality. We find that Hunt’s conclusions are robust to multiple imputation. However, when we include more recent years in our data set and measure the effect of post-2008 years, we find that blacks are more likely to choose an agency explanation while whites are less likely to reference agency and mixed explanation.

  10. Population of the United States in 1860, by race and gender

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the United States in 1860, by race and gender [Dataset]. https://www.statista.com/statistics/1010196/population-us-1860-race-and-gender/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1860
    Area covered
    United States
    Description

    This statistic shows the population of the United States in the final census year before the American Civil War, shown by race and gender. From the data we can see that there were almost 27 million white people, 4.5 million black people, and eighty thousand classed as 'other'. The proportions of men to women were different for each category, with roughly 700 thousand more white men than women, over 100 thousand more black women than men, and almost three times as many men than women in the 'other' category. The reason for the higher male numbers in the white and other categories is because men migrated to the US at a higher rate than women, while there is no concrete explanation for the statistic regarding black people.

  11. Murder in the U.S.: number of victims in 2023, by race

    • statista.com
    • ai-chatbox.pro
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Murder in the U.S.: number of victims in 2023, by race [Dataset]. https://www.statista.com/statistics/251877/murder-victims-in-the-us-by-race-ethnicity-and-gender/
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the FBI reported that there were 9,284 Black murder victims in the United States and 7,289 white murder victims. In comparison, there were 554 murder victims of unknown race and 586 victims of another race. Victims of inequality? In recent years, the role of racial inequality in violent crimes such as robberies, assaults, and homicides has gained public attention. In particular, the issue of police brutality has led to increasing attention following the murder of George Floyd, an African American who was killed by a Minneapolis police officer. Studies show that the rate of fatal police shootings for Black Americans was more than double the rate reported of other races. Crime reporting National crime data in the United States is based off the Federal Bureau of Investigation’s new crime reporting system, which requires law enforcement agencies to self-report their data in detail. Due to the recent implementation of this system, less crime data has been reported, with some states such as Delaware and Pennsylvania declining to report any data to the FBI at all in the last few years, suggesting that the Bureau's data may not fully reflect accurate information on crime in the United States.

  12. T

    United States - Population Level - Black or African American

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). United States - Population Level - Black or African American [Dataset]. https://tradingeconomics.com/united-states/civilian-noninstitutional-population--black-or-african-american-fed-data.html
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Mar 12, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    United States - Population Level - Black or African American was 35751.00000 Thous. of Persons in May of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - Black or African American reached a record high of 35751.00000 in May of 2025 and a record low of 14332.00000 in January of 1972. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - Black or African American - last updated from the United States Federal Reserve on July of 2025.

  13. w

    Dataset of book subjects that contain Language learning, power, race and...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Language learning, power, race and identity : white men, black language [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Language+learning%2C+power%2C+race+and+identity+:+white+men%2C+black+language&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is Language learning, power, race and identity : white men, black language. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  14. d

    Data from: Highlighting health consequences of racial disparities sparks...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Riana M. Brown; Pia Dietze; Maureen A. Craig (2023). Highlighting health consequences of racial disparities sparks support for action [Dataset]. http://doi.org/10.5061/dryad.cz8w9gj8t
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Riana M. Brown; Pia Dietze; Maureen A. Craig
    Time period covered
    Jan 1, 2023
    Description

    Racial disparities arise across many vital areas of American life, including employment, health, and interpersonal treatment. For example, 1 in 3 Black children live in poverty (vs. 1 in 9 White children) and on average, Black Americans live 4 fewer years than White Americans. Which disparity is more likely to spark reduction efforts? We find that highlighting disparities in health-related (vs. economic) outcomes spurs greater social media engagement and support for disparity-mitigating policy. Further, reading about racial health disparities elicits greater support for action (e.g., protesting) than economic or belonging-based disparities. This occurs, in part, because people view health disparities as violating morally-sacred values which enhances perceived injustice. This work elucidates which manifestations of racial inequality are most likely to prompt Americans to action., The data from Studies 1a, 1b, 3, 4a, and 4b were collected via online platfroms (i.e., Mturk.com, Prolific Academic, and NORC’s AmeriSpeak Panel). All analyses were run in R with the R code provided (title: Health_Disparities_Syntax.R)., , # Highlighting Health Consequences of Racial Disparities Sparks Support for Action

    There are a total of 5 datasets available (Studies 1a, 1b, 3, 4a, 4b) each collected by the researchers from online survey platforms. All data files are .sav files. We recommed using SPSS or RStudio to work with the data. We provide our code using RStudio and a codebook with the name of all variables in each dataset.

    Description of the data and file structure

    Study 1a and Study 1b utilized a within-subjects experimental design (S1a: N=191; S1b, preregistered: N=337, 50% White participants, 50% Black participants) where samples of U.S. citizens recruited from MTurk.com and Prolific Academic read nine examples of racial disparities, three each from the domains of health, economics, and belonging. After each example, participants reported whether the disparity was unjust and fair (reverse-coded; 2-items averaged to create a perceived injustice scale). Participants also indicated their agreement (1=s...

  15. P

    FairFace Dataset

    • paperswithcode.com
    • library.toponeai.link
    • +2more
    Updated Feb 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimmo Kärkkäinen; Jungseock Joo (2024). FairFace Dataset [Dataset]. https://paperswithcode.com/dataset/fairface
    Explore at:
    Dataset updated
    Feb 20, 2021
    Authors
    Kimmo Kärkkäinen; Jungseock Joo
    Description

    FairFace is a face image dataset which is race balanced. It contains 108,501 images from 7 different race groups: White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino. Images were collected from the YFCC-100M Flickr dataset and labeled with race, gender, and age groups.

  16. D

    Data from: Racial Bias in AI-Generated Images

    • ssh.datastations.nl
    • openicpsr.org
    • +1more
    Updated Aug 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Y. Yang; Y. Yang (2024). Racial Bias in AI-Generated Images [Dataset]. http://doi.org/10.17026/SS/7MQV4M
    Explore at:
    text/x-fixed-field(28980), application/x-spss-syntax(1998), tsv(45171)Available download formats
    Dataset updated
    Aug 1, 2024
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    Authors
    Y. Yang; Y. Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file is supplementary material for the manuscript Racial Bias in AI-Generated Images, which has been submitted to a peer-reviewed journal. This dataset/paper examined the image-to-image generation accuracy (i.e., the original race and gender of a person’s image were replicated in the new AI-generated image) of a Chinese AI-powered image generator. We examined the image-to-image generation models transforming the racial and gender categories of the original photos of White, Black and East Asian people (N =1260) in three different racial photo contexts: a single person, two people of the same race, and two people of different races.

  17. O

    COVID-19 Vaccinations by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated May 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2021). COVID-19 Vaccinations by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity-ARCHIVE/xkga-ifz3
    Explore at:
    csv, json, xml, application/rssxml, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    May 20, 2021
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    NOTE: After 5/20/2021, this dataset will no longer be updated and will be replaced by the new dataset: "COVID-19 Vaccinations by Race/Ethnicity" (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/4z97-pa4q).

    Cumulative number and percent of people who initiated COVID-19 vaccination and who are fully vaccinated by race/ethnicity for select age groups (ages 16+, ages 65-74, and ages 75+) as reported by providers.

    Population estimates are based on 2019 CT population estimates. The 2019 CT population data which is the most recent year available. The tables that show the percent vaccinated by town and age group are an exception. These tables use 2014 CT population estimates. This the most recent year for which reliable estimates by town and age are available.

    A person who has received one dose of any vaccine is considered to have received at least one dose. A person is considered fully vaccinated if they have received 2 doses of the Pfizer or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the number who have received at least one dose. The number with At Least One Dose and the number Fully Vaccinated add up to more than the total number of doses because people who received the Johnson & Johnson vaccine fit into both categories.

    In this data, a person with reported Hispanic or Latino ethnicity is considered Hispanic regardless of reported race. The category Unknown includes unknown race and/or ethnicity.

    The percent of people classified as Other race (not specified) and Multiple race in CT WiZ (for COVID-19 vaccine records and all other vaccine records) are higher than would be expected based on census data. Other race, Multiple race and Unknown include people who should be classified as Asian, Black, Hispanic and White. Therefore, the coverage of these groups may be underestimated and should be interpreted with caution.

    The estimates for the category Multiple Races are considered unreliable

    All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected.

    Note: As part of continuous data quality improvement efforts, duplicate records were removed from the COVID-19 vaccination data during the weeks of 4/19/2021 and 4/26/2021.

  18. H

    Replication Data for Race, Crime, and Emotions

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Camille Burge; Gbemende Johnson (2018). Replication Data for Race, Crime, and Emotions [Dataset]. http://doi.org/10.7910/DVN/V1LMZ5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Camille Burge; Gbemende Johnson
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Experimental research on racial attitudes examines how Whites’ stereotypes of Black Americans shape their attitudes about the death penalty, violent crime, and other punitive measures. Marginally discussed in the race-to-crime literature are Blacks’ perceptions of retribution and justice. We fill this void by using an original survey experiment of 900 Black Americans to examine how exposure to intra-and-intergroup violent crime shapes their policy attitudes and emotional reactions to crime. We find that Blacks are more likely to support increased prison sentences for violent crimes when the perpetrator is White and the victim is Black, and reduced sentences for “Black-on-Black” crime. Our analyses further reveal that Black people express higher levels of anger when the victim is Black and the perpetrator is White; levels of shame and anger also increase in instances of Black-on-Black crime. Given current race relations in America, we conclude by speculating about how these emotional reactions might shape one’s willingness to participate in the political arena.

  19. F

    Labor Force Participation Rate - 20 Yrs. & over, Black or African American...

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Labor Force Participation Rate - 20 Yrs. & over, Black or African American Men [Dataset]. https://fred.stlouisfed.org/series/LNS11300031
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Labor Force Participation Rate - 20 Yrs. & over, Black or African American Men (LNS11300031) from Jan 1972 to Jun 2025 about 20 years +, males, participation, African-American, labor force, labor, household survey, rate, and USA.

  20. c

    Poverty Status by Town - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Training Data (2024). black-people-liveness-detection-video-dataset [Dataset]. https://huggingface.co/datasets/TrainingDataPro/black-people-liveness-detection-video-dataset

black-people-liveness-detection-video-dataset

TrainingDataPro/black-people-liveness-detection-video-dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 11, 2024
Authors
Training Data
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Biometric Attack Dataset, Black People

  The similar dataset that includes all ethnicities - Anti Spoofing Real Dataset

The dataset for face anti spoofing and face recognition includes images and videos of black people. The dataset helps in enchancing the performance of the model by providing wider range of data for a specific ethnic group. The videos were gathered by capturing faces of genuine individuals presenting spoofs, using facial presentations. Our dataset proposes… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/black-people-liveness-detection-video-dataset.

Search
Clear search
Close search
Google apps
Main menu