7 datasets found
  1. 2012 06: Bay Area Racial Diversity in 2010

    • opendata.mtc.ca.gov
    Updated Jun 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2012). 2012 06: Bay Area Racial Diversity in 2010 [Dataset]. https://opendata.mtc.ca.gov/documents/MTC::2012-06-bay-area-racial-diversity-in-2010/about
    Explore at:
    Dataset updated
    Jun 25, 2012
    Dataset provided by
    Association of Bay Area Governmentshttps://abag.ca.gov/
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    San Francisco Bay Area
    Description

    Racial diversity is measured by a diversity index that is calculated using United States Census racial and ethnic population characteristics from the PL-94 data file. The diversity index is a quantitative measure of the distribution of the proportion of five major ethnic populations (non-Hispanic White, non-Hispanic Black, Asian and Pacific Islander, Hispanic, and Two or more races). The index ranges from 0 (low diversity meaning only one group is present) to 1 (meaning an equal proportion of all five groups is present). The diversity score for the United States in 2010 is 0.60. The diversity score for the San Francisco Bay Region is 0.84. Within the region, Solano (0.89) and Alameda (0.90) Counties are the most diverse and the remaining North Bay (0.55 - 0.64) Counties are the least diverse.

  2. Demographic characteristics among non-Latina Whites, non-Latina Blacks, and...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phum Tachachartvanich; Sylvia S. Sanchez; Scarlett L. Gomez; Esther M. John; Martyn T. Smith; Laura Fejerman (2023). Demographic characteristics among non-Latina Whites, non-Latina Blacks, and Latinas in the San Francisco Bay Area Breast Cancer Study 1996–2002. [Dataset]. http://doi.org/10.1371/journal.pone.0233904.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Phum Tachachartvanich; Sylvia S. Sanchez; Scarlett L. Gomez; Esther M. John; Martyn T. Smith; Laura Fejerman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Francisco Bay Area
    Description

    Demographic characteristics among non-Latina Whites, non-Latina Blacks, and Latinas in the San Francisco Bay Area Breast Cancer Study 1996–2002.

  3. f

    Characteristics of 15,280 African American adults by study population.

    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ching-Yu Cheng; W. H. Linda Kao; Nick Patterson; Arti Tandon; Christopher A. Haiman; Tamara B. Harris; Chao Xing; Esther M. John; Christine B. Ambrosone; Frederick L. Brancati; Josef Coresh; Michael F. Press; Rulan S. Parekh; Michael J. Klag; Lucy A. Meoni; Wen-Chi Hsueh; Laura Fejerman; Ludmila Pawlikowska; Matthew L. Freedman; Lina H. Jandorf; Elisa V. Bandera; Gregory L. Ciupak; Michael A. Nalls; Ermeg L. Akylbekova; Eric S. Orwoll; Tennille S. Leak; Iva Miljkovic; Rongling Li; Giske Ursin; Leslie Bernstein; Kristin Ardlie; Herman A. Taylor; Eric Boerwinckle; Joseph M. Zmuda; Brian E. Henderson; James G. Wilson; David Reich (2023). Characteristics of 15,280 African American adults by study population. [Dataset]. http://doi.org/10.1371/journal.pgen.1000490.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS Genetics
    Authors
    Ching-Yu Cheng; W. H. Linda Kao; Nick Patterson; Arti Tandon; Christopher A. Haiman; Tamara B. Harris; Chao Xing; Esther M. John; Christine B. Ambrosone; Frederick L. Brancati; Josef Coresh; Michael F. Press; Rulan S. Parekh; Michael J. Klag; Lucy A. Meoni; Wen-Chi Hsueh; Laura Fejerman; Ludmila Pawlikowska; Matthew L. Freedman; Lina H. Jandorf; Elisa V. Bandera; Gregory L. Ciupak; Michael A. Nalls; Ermeg L. Akylbekova; Eric S. Orwoll; Tennille S. Leak; Iva Miljkovic; Rongling Li; Giske Ursin; Leslie Bernstein; Kristin Ardlie; Herman A. Taylor; Eric Boerwinckle; Joseph M. Zmuda; Brian E. Henderson; James G. Wilson; David Reich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ranges are given in terms of ±1 standard deviation. ARIC, Atherosclerosis Risk in Communities Study; BCFR, Breast Cancer Family Registry; CARE, Los Angeles component of the Women's Contraceptive and Reproductive Experiences Study, DHS, Dallas Heart Study; FIND, Family Investigation of Nephropathy and Diabetes Study; GCI, Genomics Collaborative Study; Health ABC, Health, Aging and Body Composition Study; JHS, Jackson Heart Study; LIFE, Learning the Influence of Family and the Environment Study; MEC, Multiethnic Cohort of Los Angeles and Hawaii; MrOS, Osteoporotic Fractures in Men Study; SFBABCS, the San Francisco Bay Area Breast Cancer Study; SOF, Study of Osteoporotic Fractures; WCHS, Women's Circle of Health Study; WGA, whole genome amplification.aBMI were measured in an actual clinical visit in the six prospective cohort studies and in the BCFR, SFBABCS and WCHS; for others, BMI was calculated from self-reported weight and height.bThese studies include case-control studies and so are not a representative cross-section of the populations. BCFR, CARE, LIFE, SFBABCS and WCHS oversampled women with breast cancer. FIND oversampled individuals with nephropathy. GCI focused on individuals with hypertension. MEC oversampled individuals with type 2 diabetes, prostate cancer, breast cancer, and hypertension.

  4. f

    Characteristics of participants at each round of the study compared to study...

    • plos.figshare.com
    xls
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos (2023). Characteristics of participants at each round of the study compared to study region population. [Dataset]. http://doi.org/10.1371/journal.pgph.0000647.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of participants at each round of the study compared to study region population.

  5. f

    Population adjusted prevalence estimates of COVID-19 outcomes and 95%...

    • plos.figshare.com
    xlsx
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos (2023). Population adjusted prevalence estimates of COVID-19 outcomes and 95% credible intervals across demographic and regional strata. [Dataset]. http://doi.org/10.1371/journal.pgph.0000647.s018
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    See tables for region and stratum population-adjusted estimates for COVID-19 outcomes and mitigation analyses. (XLSX)

  6. f

    Population-adjusted prevalence of antibodies from COVID-19 vaccination in...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos (2023). Population-adjusted prevalence of antibodies from COVID-19 vaccination in Round 3 within race/ethnicity and age groups and prevalence differences between non-White and White individuals. [Dataset]. http://doi.org/10.1371/journal.pgph.0000647.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Cameron Adams; Mary Horton; Olivia Solomon; Marcus Wong; Sean L. Wu; Sophia Fuller; Xiaorong Shao; Indro Fedrigo; Hong L. Quach; Diana L. Quach; Michelle Meas; Luis Lopez; Abigail Broughton; Anna L. Barcellos; Joan Shim; Yusef Seymens; Samantha Hernandez; Magelda Montoya; Darrell M. Johnson; Kenneth B. Beckman; Michael P. Busch; Josefina Coloma; Joseph A. Lewnard; Eva Harris; Lisa F. Barcellos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population-adjusted prevalence of antibodies from COVID-19 vaccination in Round 3 within race/ethnicity and age groups and prevalence differences between non-White and White individuals.

  7. Bivariate and multivariable logistic regression analysis assessing...

    • plos.figshare.com
    bin
    Updated Jul 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy C. Wang; Willi McFarland; Sean Arayasirikul; Erin C. Wilson (2023). Bivariate and multivariable logistic regression analysis assessing associations between demographic characteristics and religiosity among young trans women, San Francisco Bay Area, 2012–13 (N = 300). [Dataset]. http://doi.org/10.1371/journal.pone.0263492.t002
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jeremy C. Wang; Willi McFarland; Sean Arayasirikul; Erin C. Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Francisco, San Francisco Bay Area
    Description

    Bivariate and multivariable logistic regression analysis assessing associations between demographic characteristics and religiosity among young trans women, San Francisco Bay Area, 2012–13 (N = 300).

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MTC/ABAG (2012). 2012 06: Bay Area Racial Diversity in 2010 [Dataset]. https://opendata.mtc.ca.gov/documents/MTC::2012-06-bay-area-racial-diversity-in-2010/about
Organization logoOrganization logo

2012 06: Bay Area Racial Diversity in 2010

Explore at:
Dataset updated
Jun 25, 2012
Dataset provided by
Association of Bay Area Governmentshttps://abag.ca.gov/
Metropolitan Transportation Commission
Authors
MTC/ABAG
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
San Francisco Bay Area
Description

Racial diversity is measured by a diversity index that is calculated using United States Census racial and ethnic population characteristics from the PL-94 data file. The diversity index is a quantitative measure of the distribution of the proportion of five major ethnic populations (non-Hispanic White, non-Hispanic Black, Asian and Pacific Islander, Hispanic, and Two or more races). The index ranges from 0 (low diversity meaning only one group is present) to 1 (meaning an equal proportion of all five groups is present). The diversity score for the United States in 2010 is 0.60. The diversity score for the San Francisco Bay Region is 0.84. Within the region, Solano (0.89) and Alameda (0.90) Counties are the most diverse and the remaining North Bay (0.55 - 0.64) Counties are the least diverse.

Search
Clear search
Close search
Google apps
Main menu