52 datasets found
  1. d

    Divergent trends in life expectancy across the rural-urban gradient and...

    • datasets.ai
    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2020). Divergent trends in life expectancy across the rural-urban gradient and association with specific racial proportions in the contiguous United States 2000-2005 [Dataset]. https://datasets.ai/datasets/divergent-trends-in-life-expectancy-across-the-rural-urban-gradient-and-association-w-2000
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset authored and provided by
    U.S. Environmental Protection Agency
    Area covered
    Contiguous United States, United States
    Description

    We used individual-level death data to estimate county-level life expectancy at 25 (e25) for Whites, Black, AIAN and Asian in the contiguous US for 2000-2005. Race-sex-stratified models were used to examine the associations among e25, rurality and specific race proportion, adjusted for socioeconomic variables. Individual death data from the National Center for Health Statistics were aggregated as death counts into five-year age groups by county and race-sex groups for the contiguous US for years 2000-2005 (National Center for Health Statistics 2000-2005). We used bridged-race population estimates to calculate five-year mortality rates. The bridged population data mapped 31 race categories, as specified in the 1997 Office of Management and Budget standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards (the same as race categories in mortality registration) (Ingram et al. 2003). The urban-rural gradient was represented by the 2003 Rural Urban Continuum Codes (RUCC), which distinguished metropolitan counties by population size, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area (United States Department of Agriculture 2016). We obtained county-level sociodemographic data for 2000-2005 from the US Census Bureau. These included median household income, percent of population attaining greater than high school education (high school%), and percent of county occupied rental units (rent%). We obtained county violent crime from Uniform Crime Reports and used it to calculate mean number of violent crimes per capita (Federal Bureau of Investigation 2010). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Request to author. Format: Data are stored as csv files.

    This dataset is associated with the following publication: Jian, Y., L. Neas, L. Messer, C. Gray, J. Jagai, K. Rappazzo, and D. Lobdell. Divergent trends in life expectancy across the rural-urban gradient among races in the contiguous United States. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 64(9): 1367-1374, (2019).

  2. 2024 American Community Survey: B07404B | Geographical Mobility in the Past...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B07404B | Geographical Mobility in the Past Year (Black or African American Alone) for Residence 1 Year Ago in the United States (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B07404B?q=Black+or+African+American&g=050XX00US08041
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.Geographical Mobility in the Past Year (Black or African American Alone) for Residence 1 Year Ago in the United States.Table ID.ACSDT1Y2024.B07404B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estima...

  3. 2024 American Community Survey: B06004B | Place of Birth (Black or African...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B06004B | Place of Birth (Black or African American Alone) in the United States (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B06004B?q=B06004B:+PLACE+OF+BIRTH+(BLACK+OR+AFRICAN+AMERICAN+ALONE)+IN+THE+UNITED+STATES&g=310XX00US13820
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.Place of Birth (Black or African American Alone) in the United States.Table ID.ACSDT1Y2024.B06004B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, cou...

  4. Rural and Urban Trends in Family and Intimate Partner Homicide in the United...

    • icpsr.umich.edu
    • catalog.data.gov
    ascii, sas, spss
    Updated Apr 7, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup-Black, Adria (2005). Rural and Urban Trends in Family and Intimate Partner Homicide in the United States, 1980-1999 [Dataset]. http://doi.org/10.3886/ICPSR04115.v1
    Explore at:
    sas, ascii, spssAvailable download formats
    Dataset updated
    Apr 7, 2005
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Gallup-Black, Adria
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/4115/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/4115/terms

    Time period covered
    1980 - 1999
    Area covered
    United States
    Description

    This research project examined rural and urban trends in family and intimate partner homicide for the 20-year period from 1980 through 1999. The construct of place served as a backdrop against which changes in trends in family/partner homicide were tracked, and against which various independent measures that purportedly explain variation in the rates were tested. The project merged data from several sources. The offender data file from the Federal Bureau of Investigation's (FBI) Supplementary Homicide Report (SHR) series for 1980 through 1999 was the primary data source. Data for arrests for violent crime, drug, and alcohol-related offenses were obtained from the FBI Report A Arrest File. Population, population density, and race (and racial segregation) data from the decennial U.S. Census for 1980, 1990, and 2000 were also obtained. Data on hospitals, educational attainment, unemployment, and per capita income were obtained from the 2002 Area Resource File (ARF). The total number of proprietors (farm and non-farm) in the United States by state and county for each year were provided by the Regional Economic Profiles data. The project's population and proximity indicator used four categories: metropolitan, nonmetropolitan populations adjacent to a metropolitan area, nonmetropolitan populations not adjacent to a metropolitan area, and rural. Data include homicide rates for 1980 through 1999 for intimate partner homicide, family homicide, all other homicide, and all homicide. Additional variables are included as measures of community socioeconomic distress, such as residential overcrowding, isolation, traditionalist views of women and family, lack of access to health care, and substance abuse. Five-year averages are included for each of the rates and measures listed above.

  5. 2024 American Community Survey: B23002B | Sex by Age by Employment Status...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B23002B | Sex by Age by Employment Status for the Population 16 Years and Over (Black or African American Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B23002B?q=B23002&g=040XX00US42
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Sex by Age by Employment Status for the Population 16 Years and Over (Black or African American Alone).Table ID.ACSDT1Y2024.B23002B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the popul...

  6. g

    BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007

    • geocommons.com
    Updated May 19, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 19, 2008
    Dataset provided by
    data
    Bureau of Transportation Statistics National Transportation Atlas Database
    Description

    The United States MSA Boundaries data set contains the boundaries for metropolitan statistical areas in the United States. The data set contains information on location, identification, and size. The database includes metropolitan boundaries within all 50 states, the District of Columbia, and Puerto Rico. The general concept of a metropolitan area (MA) is one of a large population nucleus, together with adjacent communities that have a high degree of economic and social integration with that nucleus. Some MAs are defined around two or more nuclei. Each MA must contain either a place with a minimum population of 50,000 or a U.S. Census Bureau-defined urbanized area and a total MA population of at least 100,000 (75,000 in New England). An MA contains one or more central counties. An MA also may include one or more outlying counties that have close economic and social relationships with the central county. An outlying county must have a specified level of commuting to the central counties and also must meet certain standards regarding metropolitan character, such as population density, urban population, and population growth. In New England, MAs consist of groupings of cities and towns rather than whole counties. The territory, population, and housing units in MAs are referred to as "metropolitan." The metropolitan category is subdivided into "inside central city" and "outside central city." The territory, population, and housing units located outside territory designated "metropolitan" are referred to as "non-metropolitan." The metropolitan and non-metropolitan classification cuts across the other hierarchies; for example, generally there are both urban and rural territory within both metropolitan and non-metropolitan areas.

  7. 2024 American Community Survey: B25008B | Total Population in Occupied...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B25008B | Total Population in Occupied Housing Units by Tenure (Black or African American Alone Householder) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B25008B?q=B25008B
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.Total Population in Occupied Housing Units by Tenure (Black or African American Alone Householder).Table ID.ACSDT1Y2024.B25008B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the populatio...

  8. f

    Population ICU bed access for access levels by race and ethnicity.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Nov 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kendall J. Burdick; Chris A. Rees; Lois K. Lee; Michael C. Monuteaux; Rebekah Mannix; David Mills; Michael P. Hirsh; Eric W. Fleegler (2023). Population ICU bed access for access levels by race and ethnicity. [Dataset]. http://doi.org/10.1371/journal.pone.0287720.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Kendall J. Burdick; Chris A. Rees; Lois K. Lee; Michael C. Monuteaux; Rebekah Mannix; David Mills; Michael P. Hirsh; Eric W. Fleegler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population ICU bed access for access levels by race and ethnicity.

  9. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  10. a

    Tract-Level Housing Unit and Urbanization Estimates for the Continental...

    • hub.arcgis.com
    • gis-bradd-ky.opendata.arcgis.com
    Updated Jul 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barren River Area Development District (2022). Tract-Level Housing Unit and Urbanization Estimates for the Continental U.S., 1940-2019 [Dataset]. https://hub.arcgis.com/datasets/68ec6188d792455a9d781635da397c8b
    Explore at:
    Dataset updated
    Jul 21, 2022
    Dataset authored and provided by
    Barren River Area Development District
    Area covered
    Description

    This map shows the historical housing unit change in consistent 2010 census tract boundaries from 1940 to 2019. In many cities over that time period—especially in the 1950s and 1960s—federal, state, and local governments demolished thousands of housing units as part of their "urban renewal" programs. These neighborhoods were typically in the older parts of city centers, contained lower income populations, and had higher shares of Black, Hispanic, and immigrant residents than their respective cities. Homes were typically replaced with new interstate highways and thoroughfares, stadiums, civic buildings, parking lots, high rises, rights of way, and other non-residential uses. In a fraction of cases, homes were replaced with public housing. Many of these areas show up as red on this map because they still have not regained the level of housing they had before World War II.Urban renewal is not the only reason for housing loss. Many tracts in places that have been undergoing population decline—especially cities in the North and Midwest and many rural communities—have also lost considerable amounts of housing over this time period.On the other side of things, many suburban and exurban areas—especially in the South and West—have experienced significant population and housing unit growth. These places show up as blue on this map.The data used to make this map comes from the Historical Housing Unit and Urbanization Database 2010, or HHUUD10. To read more on the methodologies used to estimate the housing unit counts, please refer to the methods paper. To download the data in tabular form, please visit the data repository. To download the feature layer used to make this map or read about the attributes, see the feature layer. Please also remember that these data are estimates and are therefore imperfect. They should be treated like all interpolated data: with caution and a healthy dose of skepticism.Citation:Markley, S.N., Holloway, S.R., Hafley, T.J., Hauer, M.E. 2022. Housing unit and urbanization estimates for the continental U.S. in consistent tract boundaries, 1940–2019. Scientific Data 9 (82). https://doi.org/10.1038/s41597-022-01184-x

  11. c

    Census of Population and Housing, 1980: Special Tabulations of Population 60...

    • archive.ciser.cornell.edu
    Updated Feb 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1980: Special Tabulations of Population 60 Years and Over [Dataset]. http://doi.org/10.6077/j5/fohizj
    Explore at:
    Dataset updated
    Feb 12, 2020
    Dataset authored and provided by
    Bureau of the Census
    Variables measured
    Individual
    Description

    These data, which correspond to tables provided in the documentation, summarize information on the United States population aged 60 years and over that was collected in the 1980 Census of Population and Housing. The tables were prepared by the Bureau of the Census at the request of the National Institute on Aging. Variables appearing in one or more of the tables are age (in single years or five-year intervals), sex, race (black/white), living arrangements (institutionalization status, household/group quarters, living in families/alone, relationship to householder, persons per room), income (source, personal level, family level, household level, poverty status), veteran status, educational attainment, urban/rural residence, marital status, nativity status, and Spanish origin. In some of the tables totals that exclude amounts allocated for missing data are provided for purposes of comparison. The variables for which non-allocated figures are included are age, race, institutionalization status, income, veterans status, educational attainment, marital status, and Spanish origin. The file contains a complete set of tables for the United States as a whole, for each of the four Census regions, and for each of the 50 States, the District of Columbia, and five territories. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08533.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.

  12. Descriptors of females receiving care at the Inner City/Urban Core vs. Rural...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kelly Jo Sandri; Inge Verdenius; Mitchell J. Bartley; Britney M. Else; Christopher A. Paynter; Beth E. Rosemergey; George D. Harris; Gerard J. Malnar; Sean M. Harper; R. Stephen Griffith; Aaron J. Bonham; Diane M. Harper (2023). Descriptors of females receiving care at the Inner City/Urban Core vs. Rural Safety Net Health Care Locations. [Dataset]. http://doi.org/10.1371/journal.pone.0096277.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Kelly Jo Sandri; Inge Verdenius; Mitchell J. Bartley; Britney M. Else; Christopher A. Paynter; Beth E. Rosemergey; George D. Harris; Gerard J. Malnar; Sean M. Harper; R. Stephen Griffith; Aaron J. Bonham; Diane M. Harper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *There are significantly more white females in the rural location than urban, p = 0.026.§There are significantly more black females in the urban location than rural, p = 0.021.There are no significant age or pregnancy history differences between the urban core population and the rural population.

  13. 2024 American Community Survey: C21001B | Sex by Age by Veteran Status for...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: C21001B | Sex by Age by Veteran Status for the Civilian Population 18 Years and Over (Black or African American Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.C21001B?t=Black+or+African+American:Veterans
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.Sex by Age by Veteran Status for the Civilian Population 18 Years and Over (Black or African American Alone).Table ID.ACSDT1Y2024.C21001B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the...

  14. g

    BTS, National Highway Planning Network (line), USA, 2007

    • geocommons.com
    Updated May 16, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). BTS, National Highway Planning Network (line), USA, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 16, 2008
    Dataset provided by
    data
    Bureau of Transportation Statistics National Transportation Atlas Database
    Description

    The National Highway Planning Network is a comprehensive network database of the nation's major highway system. It consists of the nation's highways comprised of Rural Arterials, Urban Principal Arterials and all National Highway System routes. The data set covers the 48 contiguous States plus the District of Columbia, Alaska, Hawaii, and Puerto Rico. The nominal scale of the data set is 1:100,000 with a maximal positional error of 80 meters.

  15. CDC WONDER: Compressed Mortality - Underlying Cause of Death

    • datasets.ai
    • data.amerigeoss.org
    • +1more
    21
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). CDC WONDER: Compressed Mortality - Underlying Cause of Death [Dataset]. https://datasets.ai/datasets/cdc-wonder-compressed-mortality-underlying-cause-of-death
    Explore at:
    21Available download formats
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    The CDC WONDER Mortality - Underlying Cause of Death online database is a county-level national mortality and population database spanning the years since 1979 -2008. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., Census region, Census division, state, and county), age group (including infant age groups), race (years 1979-1998: White, Black, and Other; years 1999-2008: American Indian or Alaska Native, Asian or Pacific Islander, Black or African American, and White), Hispanic origin (years 1979-1998: not available; years 1999-present: Hispanic or Latino, not Hispanic or Latino, Not Stated), gender, year of death, and underlying cause of death (years 1979-1998: 4-digit ICD-9 code and 72 cause-of-death recode; years 1999-present: 4-digit ICD-10 codes and 113 cause-of-death recode, as well as the Injury Mortality matrix classification for Intent and Mechanism), and urbanization level of residence (2006 NCHS urban-rural classification scheme for counties). The Compressed Mortality data are produced by the National Center for Health Statistics.

  16. f

    COVID speed reach and spread dataset (.csv file)

    • figshare.com
    xlsx
    Updated Jan 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Augusto de Paula da Silva; Rodrigo Reis; Franciele Iachecen; Fabio Duarte; Cristina Pellegrino Baena; Adriano Akira Hino (2024). COVID speed reach and spread dataset (.csv file) [Dataset]. http://doi.org/10.6084/m9.figshare.24999911.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 15, 2024
    Dataset provided by
    figshare
    Authors
    Alexandre Augusto de Paula da Silva; Rodrigo Reis; Franciele Iachecen; Fabio Duarte; Cristina Pellegrino Baena; Adriano Akira Hino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    City level open access data from 26 States and the Federal District and from the Brazilian Institute of Geography and Statistics (IBGE) [20], the Department of Informatics of Brazilian Public Health System – DATASUS, Ministry of Health, the Brazilian Agricultural Research Corporation (Embrapa) and from Brazil.io. Data from all 5,570 cities in Brazil were included in the analysis. COVID-19 data included cases and deaths reported between February 26th, 2020 and February 4th, 2021. The following outcomes were computed: a) days between the first case in Brazil until the first case in the city; b) days between the first case in the city until the day when 1,000 cases were reported; and c) days between the first death in city until the day when 50 deaths inhabitants were reported. Descriptive analyses were performed on the following: proportion of cities reaching 1,000 cases; number of cases at three, six, nine and 12 months after first case; cities reporting at least one COVID-19 related death; number of COVID-19 related deaths at three, six, nine and 12 months after first death in the country. All incidence data is adjusted for 100,000 inhabitants.The following covariates were included: a) geographic region where the city is located (Midwest, North, Northeast, Southeast and South), metropolitan city (no/yes) and urban or rural; b) social and environmental city characteristics [total area (Km2), urban area (Km2), population size (inhabitants), population living within urban area (inhabitants), population older than 60 years (%), indigenous population (%), black population (%), illiterate older than 25 years (%) and city in extreme poverty (no/yes)]; c) housing conditions [household with density >2 per dormitory (%), household with garbage collection (%), household connected to the water supply system (%) and household connected to the sewer system (%)]; d) job characteristics [commerce (%) and informal workers (%)]; e) socioeconomic and inequalities characteristics [GINI index; income per capita; poor or extremely poor (%) and households in informal urban settlements (%)]; f) health services access and coverage [number of National Public Health System (SUS) physicians per inhabitants (100,000 inhabitants), number of SUS nurses per inhabitants (100,000 inhabitants), number of intensive care units or ICU per inhabitants (100,000 inhabitants). All health services access and coverage variables were standardized using z-scores, combined into one single variable categorized into tertiles.

  17. w

    South Africa - Internal Migration in South Africa 1999-2000 - Dataset -...

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). South Africa - Internal Migration in South Africa 1999-2000 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/south-africa-internal-migration-south-africa-1999-2000
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    In 1997 the Population Studies and Training Center (PSTC) of Brown University undertook a series of comparative training and research projects in three countries Vietnam, Ethiopia, and Guatemala. The projects were concerned with the training of planners and researchers in procedures for collecting and analyzing information on migration and its relation to development, women's status, health, and reproduction. Recognizing the importance of migration in South Africa and the pressing need for increasing the number of qualified researchers capable of focussing on this topic, in 1998 the Andrew W. Mellon Foundation provided additional funds to add South Africa to the project. The Centre for Population Studies (CENPOPS) at Pretoria University was given responsibility for the project, working in cooperation with scholars from PSTC at Brown University. The focus of the South African project was on the country's black population. Migration is defined in the survey as movement from one district to another or, if movement is within a district, between a rural and an urban area.

  18. 2024 American Community Survey: B02023 | Black or African American Alone by...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B02023 | Black or African American Alone by Selected Groups (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B02023
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    Africa, United States
    Description

    Key Table Information.Table Title.Black or African American Alone by Selected Groups.Table ID.ACSDT1Y2024.B02023.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and t...

  19. 2024 American Community Survey: B14007B | School Enrollment by Detailed...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B14007B | School Enrollment by Detailed Level of School for the Population 3 Years and Over (Black or African American Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B14007B?q=Education&t=Race+and+Ethnicity&g=040XX00US55_050XX00US55025_010XX00US
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    United States
    Description

    Key Table Information.Table Title.School Enrollment by Detailed Level of School for the Population 3 Years and Over (Black or African American Alone).Table ID.ACSDT1Y2024.B14007B.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates...

  20. f

    Data_Sheet_1_Green space justice amid COVID-19: Unequal access to public...

    • figshare.com
    • frontiersin.figshare.com
    docx
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuqi Gao; Wei Zhai; Xinyu Fu (2023). Data_Sheet_1_Green space justice amid COVID-19: Unequal access to public green space across American neighborhoods.docx [Dataset]. http://doi.org/10.3389/fpubh.2023.1055720.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    Frontiers
    Authors
    Shuqi Gao; Wei Zhai; Xinyu Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Countries around the world have resorted to issuing stay-at-home orders to slow viral transmission since the COVID-19 pandemic. During the lockdown, access to public park plays a central role in the public health of surrounding communities. However, we know little about how such an unprecedented policy may exacerbate the preexisting unequal access to green space (i.e., green space justice). To address this research void, we used difference-in-difference models to examine socioeconomic disparities, urban-rural disparities, and mobility disparities in terms of public park access in the United States. Our national analysis using the weekly mobile phone movement data robustly suggests the following three key findings during COVID-19: (1) The elderly, non-college-educated people, poor people, and blacks are less likely to visit public parks frequently, while unemployed people appear to be the opposite. (2) Compared to rural areas, populations in urban neighborhoods appear to visit public parks more frequently and they generally go to larger parks to minimize the risk of infection. (3) Populations in neighborhoods with higher private vehicle ownership or those with a higher density of transit stops would more frequently visit and travel a longer distance to public parks during the stay-at-home order. Our results imply that conventional inequality in green space access may still exist and even become worse during COVID-19, which could negatively impact people's health during isolation. We suggest that special attention should be paid to park-poor neighborhoods during the pandemic and in the post-pandemic recovery phase.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Environmental Protection Agency (2020). Divergent trends in life expectancy across the rural-urban gradient and association with specific racial proportions in the contiguous United States 2000-2005 [Dataset]. https://datasets.ai/datasets/divergent-trends-in-life-expectancy-across-the-rural-urban-gradient-and-association-w-2000

Divergent trends in life expectancy across the rural-urban gradient and association with specific racial proportions in the contiguous United States 2000-2005

Explore at:
Dataset updated
Nov 12, 2020
Dataset authored and provided by
U.S. Environmental Protection Agency
Area covered
Contiguous United States, United States
Description

We used individual-level death data to estimate county-level life expectancy at 25 (e25) for Whites, Black, AIAN and Asian in the contiguous US for 2000-2005. Race-sex-stratified models were used to examine the associations among e25, rurality and specific race proportion, adjusted for socioeconomic variables. Individual death data from the National Center for Health Statistics were aggregated as death counts into five-year age groups by county and race-sex groups for the contiguous US for years 2000-2005 (National Center for Health Statistics 2000-2005). We used bridged-race population estimates to calculate five-year mortality rates. The bridged population data mapped 31 race categories, as specified in the 1997 Office of Management and Budget standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards (the same as race categories in mortality registration) (Ingram et al. 2003). The urban-rural gradient was represented by the 2003 Rural Urban Continuum Codes (RUCC), which distinguished metropolitan counties by population size, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area (United States Department of Agriculture 2016). We obtained county-level sociodemographic data for 2000-2005 from the US Census Bureau. These included median household income, percent of population attaining greater than high school education (high school%), and percent of county occupied rental units (rent%). We obtained county violent crime from Uniform Crime Reports and used it to calculate mean number of violent crimes per capita (Federal Bureau of Investigation 2010). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Request to author. Format: Data are stored as csv files.

This dataset is associated with the following publication: Jian, Y., L. Neas, L. Messer, C. Gray, J. Jagai, K. Rappazzo, and D. Lobdell. Divergent trends in life expectancy across the rural-urban gradient among races in the contiguous United States. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 64(9): 1367-1374, (2019).

Search
Clear search
Close search
Google apps
Main menu