Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterIn the U.S., the share of the population living in poverty fluctuated significantly throughout the six decades between 1987 and 2023. In 2023, the poverty level across all races and ethnicities was 11.1 percent. Black Americans have been the ethnic group with the highest share of their population living in poverty almost every year since 1974. In 1979 alone, Black poverty was well over double the national average, and over four times the poverty rate in white communities; in 1982, almost 48 percent of the Black population lived in poverty. Although poverty rates have been trending downward across all ethnic groups, 17.8 percent of Black Americans and 18.9 percent of American Indian and Alaskan Natives still lived below the poverty line in 2022.
Facebook
TwitterIn 2023, there were about 336,000 Black married-couple families living below the poverty level in the United States. Poverty is the state of one who lacks a certain amount of material possessions or money. Absolute poverty or destitution is inability to afford basic human needs, which commonly includes clean and fresh water, nutrition, health care, education, clothing and shelter.
Facebook
TwitterIn 2023, there were about 1.6 million Black families living below the poverty level in the United States. Poverty is the state of one who lacks a certain amount of material possessions or money. Absolute poverty or destitution is inability to afford basic human needs, which commonly includes clean and fresh water, nutrition, health care, education, clothing and shelter.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Percent of Population Below the Poverty Level (5-year estimate) in Black Hawk County, IA (S1701ACS019013) from 2012 to 2023 about Black Hawk County, IA; Waterloo; IA; poverty; percent; 5-year; population; and USA.
Facebook
TwitterIn 2023, 17.8 percent of Black families with a single father were living below the poverty line in the United States. Poverty is the state of one who lacks a certain amount of material possessions or money. Absolute poverty or destitution is inability to afford basic human needs, which commonly includes clean and fresh water, nutrition, health care, education, clothing and shelter.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Percent of Population Below the Poverty Level (5-year estimate) in Black Hawk County, IA was 14.70% in January of 2023, according to the United States Federal Reserve. Historically, Percent of Population Below the Poverty Level (5-year estimate) in Black Hawk County, IA reached a record high of 17.00 in January of 2013 and a record low of 14.70 in January of 2023. Trading Economics provides the current actual value, an historical data chart and related indicators for Percent of Population Below the Poverty Level (5-year estimate) in Black Hawk County, IA - last updated from the United States Federal Reserve on November of 2025.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Between 2019 and 2023, people living in households in the Asian and ‘Other’ ethnic groups were most likely to be in persistent low income before and after housing costs
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterThis layer is part of source data for the State of Poverty 2018-2024 Los Angeles County Dashboard.Layers include estimates of total population and population in poverty by demographics at each geography level in LA County.Source: Annual Population and Poverty Estimation, Los Angeles County ISD-Demography.Datasets for all years available in the State of Poverty dashboard:PAI Poverty Map Data 2024PAI Poverty Map Data 2023PAI Poverty Map Data 2022PAI Poverty Map Data 2021PAI Poverty Map Data 2020PAI Poverty Map Data 2019PAI Poverty Map Data 2018 Included Geography LevelsSplit Census TractsCensus TractsCountywide Statistical Areas (CSA)Public Use Microdata Areas (PUMA)Service Planning Area (SPA)Supervisor District (SD)Los Angeles County Split Census Tract and CSA boundaries correspond to the year of the population and poverty estimates. Census Tract, PUMA, SPA, SD, and county boundaries are current as of 2020 US Census. Field NamesPlease see Field Aliases for detailed field names.Field name logic:1st character Race/Ethnicityt = Totala = Asianb = Black or African Americanh = Hispanic or Latinoi = American Indian and Alaska Native (AIAN)p = Pacific Islanderw = White2nd character Gendert = Totalf = Femalem = Male3-4th characters Year2-digit year (2018-22)Possible 5th character Poverty Level (%FPL)a = Below 100% FPLd = Below 200% FPLg = Below 266% FPLRemaining characters after underscoret = Total (all ages)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterThis dataset contains data included in the San Diego County Regional Equity Indicators Report led by the Office of Equity and Racial Justice (OERJ). The full report can be found here: https://data.sandiegocounty.gov/stories/s/7its-kgpt.
Geographic data used to create maps in the report can be found here: https://data.sandiegocounty.gov/dataset/Equity-Report-Data-Geography/p6uw-qxpv
Filter by the Indicator column to select data for a particular indicator.
User notes: 10/9/25 - for the report year 2025, data for the following indicators were uploaded with changes relative to report year 2023: Crime Rate: As of January 1, 2021, the FBI replaced the Summary Reporting System (SRS) with the National Incident Based Reporting System (NIBRS), which expands how crimes were recorded and classified. This report uses California’s version of NIBRS, the California Incident Based Reporting System (CIBRS), obtained from the SANDAG Open Data Portal. Crime rates are not disaggregated by jurisdiction, as in the previous Equity Indicator Report. Internet access: The age group variable was incorporated to account for notable disparities in internet access by age. Police Stops and Searches: refined methods. Agency data was aggregated to San Diego County because data was available for all agencies; previously data was available for three agencies. Analysis of RIPA data was updated to exclude stops where the stop was made in response to a call for service, combine transgender women and transgender men into a transgender category, and limit to contraband found during search. Used term “discovery rate” instead of “hit rate.” Removed comparison to traffic collision data and instead compared to population estimates from the American Community Survey. Jail Incarceration: new data sources. The numerator data for the average daily population data in jail was obtained from the San Diego County Sheriff's Office. Population data to calculate the rates was obtained from the San Diego Association of Governments (SANDAG). The terms for conviction status were corrected to "locally sentenced" and "unsentenced" for sentencing status. For jail population data, East African was reclassified as Black and Middle Eastern as White to allow for calculation of rates using SANDAG population estimates.
8/1/25 - for the report year 2025, the following change were made: Business Ownership: the minority and nonminority labels were switched for the population estimates and some of the race/ethnicity data for nonemployer businesses were corrected. Homelessness: added asterisks to category name for unincorporated regions to allow for a footnote in the figure in the story page.
7/11/25 - for the report year 2025, the following changes were made: Beach Water Quality: the number of days with advisories was corrected for Imperial Beach municipal beach, San Diego Bay, and Ocean Beach.
5/22/25 - for the report year 2023, the following changes were made: Youth poverty/Poverty: IPUMS identified an error in the POVERTY variable for multi-year ACS samples. In July 2024, they released a revised version of all multi-year ACS samples to IPUMS USA, which included corrected POVERTY values. The corrected POVERTY values were downloaded, and the analysis was rerun for this indicator using the 2021 ACS 5-year Estimates. Youth Poverty: data source label corrected to be 2021 for all years. Employment, Homeownership, and Cost-Burdened Households - Notes were made consistent for rows where category = Race/Ethnicity.
5/9/25 - Excluding data for the crime section indicators, data were appended on May 9, 2025 and the report will be updated to reflect the new data in August 2025. The following changes in methods were made: For indicators based on American Community Survey (ACS) data, the foreign-born category name was changed to Nativity Status. Internet access: Group quarters is a category included in the survey sample, but it is not part of the universe for the analysis. For the 2025 Equity Report year, respondents in group quarters were excluded from the analysis, whereas for the 2023 Equity Report year, these respondents were included. Adverse childhood experiences - new data source.
Prepared by: Office of Evaluation, Performance, and Analytics and the Office of Equity and Racial Justice, County of San Diego, in collaboration with the San Diego Regional Policy & Innovation Center (https://www.sdrpic.org).
Facebook
TwitterCounty-level race and ethnicity estimates for populations for whom poverty status has been determined, cross-tabulated with income estimates for populations with income below poverty level. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables B17001, B17001A, B17001B, B17001C, B17001D, B17001E, B17001F, B17001G, B17001H, and B17001I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3845 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
Facebook
TwitterIn 2023, the prevalence of extreme poverty among black men and women in Brazil was higher than that observed in other demographic groups. In particular, the rate of extreme poverty among black men reached two percent, which was the highest among all demographic groups.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterCreated for the 2023-2025 State of Black Los Angeles County (SBLA) interactive report. Countywide Statistical Areas (CSA) are current as of October 2023.
Fields ending in _yr1 were calculated for the original 2021-2022 SBLA report, while fields ending in _yr2 or without a year suffix were calculated for the 2023-2025 version. Eviction Filings per 100 (eviction_filings_per100) and Life Expectancy (life_expectancy) did not have updated data and are the same data shown in the Year 1 report.
Population and demographic data are from US Census American Community Survey (ACS) 5-year estimates, aggregated up from census tract or block group to CSA. Year 1 data are from 2020, year 2 data are from 2022.
Poverty Data (200% FPL) are from LA County ISD-eGIS Demographics. Year 1 data are from 2021, Year 2 are from 2022.
The 2023-2025 report includes several new indicators that are calculated as the percent of countywide population by race that resides in a geographic area of interest. Population for these indicators is estimated based on intersection with census block group centroids. These indicators are:
Indicator
Fields
Source
Health Professional Shortage Areas (HPSA) for Primary Care
hpsa_primary_pct hpsa_primary_black_pct
LA County DPH https://data.lacounty.gov/datasets/lacounty::health-professional-shortage-area-primary-care/about
Health Professional Shortage Areas (HPSA) for Mental Health
hpsa_mental_pct hpsa_mental_black_pct
LA County DPH https://data.lacounty.gov/datasets/lacounty::health-professional-shortage-area-mental-health/about
Concentrated Disadvantage
cd_pct cd_black_pct
LA County ISD-Enterprise GIS https://egis-lacounty.hub.arcgis.com/datasets/lacounty::concentrated-disadvantage-index-2022/explore
Firearm Dealers
firearm_dl_count (count of dealers in CSA) firearm_dl_per10000 (rate of dealers per 10,000)
LA County DPH Office of Violence Prevention (OVP)
High and Very High Park Need Areas
parks_need_pct parks_need_black_pct
LA County Parks Needs Assessment Plus (PNA+) https://lacounty.maps.arcgis.com/apps/instant/media/index.html?appid=3d0ef36720b447dcade1ab87a2cc80b9
High Quality Transit Areas
hqta_pct hqta_black_pct
SCAG https://lacounty.maps.arcgis.com/home/item.html?id=43e6fef395d041c09deaeb369a513ca1
High Walkability Areas
walk_total_pct walk_black_pct
EPA Walkability Index https://www.epa.gov/smartgrowth/smart-location-mapping#walkability
High Poverty and High Segregation Areas
highpovseg_total_pct highpovseg_black_pct
CTCAC/HCD Opportunity Area Maps https://www.treasurer.ca.gov/ctcac/opportunity.asp
LA County Arts Investments
arts_dollars (total $$ for CSA) arts_dollars_percap (investment dollars per capita)
LA County Department of Arts and Culture https://lacountyartsdata.org/#maps
Strong Start (areas with at least 9 Strong Start indicators)
strongstart_total_pct strongstart_black_pct
CA Strong Start Index https://strongstartindex.org/map
For more information about the purpose of this data, please contact CEO-ARDI.
For more information about the configuration of this data, please contact ISD-Enterprise GIS.
Facebook
TwitterWFRC Community Focus Areas (2023)Geographic Representation Units WFRC’s Community Focus Areas (CFAs) are geographic areas for which additional consideration may be given within the planning and programming processes for future transportation, economic development, and other projects administered through WFRC. CFAs are used by WFRC in support of meeting the Council-established goal of promoting “inclusive engagement in transportation planning processes and equitable access to affordable and reliable transportation options.” CFAs are designated from Census block group geographic zones that meet the criteria described below. Census block groups are used as these are the smallest geographic areas for which more detailed household characteristics like employment, income, vehicle ownership, commute trip, and English language proficiency are available. WFRC recognizes the limitations of geography-based analysis, as proper planning work considers together the needs of individuals, groups and sectors, and geographic areas. However, geography-based analyses offer a useful starting point for the consideration and prioritization of projects that will serve specific community needs.2023 Community Focus Area Criteria UpdateFor the 2023 RTP planning cycle, WFRC will use two factors in designating geography-based CFAs: 1) concentration of low-income households and 2) concentration of persons identifying as members of racial and ethnic minority groups. The geography for these factors can be identified from consistent and regularly updated data sources maintained by the U.S. Census Bureau. WFRC will also make data available that conveys, while maintaining individual anonymity, the geographic distribution of additional measures including concentrations of persons with disabilities, households with limited English language proficiency, households that do not own a vehicle, older residents (65+ years of age), and younger residents (0-17 years of age). While the application of these factors within the planning process is less straightforward because of their higher statistical margins of error and comparatively even distribution within the region, these additional factors remain valuable as planning context. Low Income Focus Areas, Methodology for IdentificationThe block group-level data from the 2020 Census American Community Survey (ACS) 5-year dataset (Table C17002: Ratio of Income to Poverty Level), is used to determine the percentage of the population within each block group that are in households that have a ratio of income to federal poverty threshold of equal to or less than 1, i.e., their income is below the poverty level. The federal poverty threshold is set differently for households, considering their household size and age of household members.Census block groups in which more than 20% of the households whose income is less than or equal to the federal poverty threshold are included in the WFRC CFAs and designated as Low-Income focus areas. Racial and Ethnic Minority Focus AreasThe block group-level data from the 2020 ACS 5-year dataset (Table B03002: Hispanic or Latino Origin By Race) is used to determine the percentage of the population that did not self-identify their race and ethnicity as “White alone.” The average census block group area in the Wasatch Front urbanized areas has 24.2% of its population that identifies as Black or African American alone, American Indian, and Alaska Native alone, Asian alone, Native Hawaiian and other Pacific Islander alone, some other race alone, two or more races, or of Hispanic or Latino origin.Census blocks in which more than 40%2 of the population identifies as one or more of the racial or ethnic groups listed above are included in the WFRC CFAs and designated as Racial and Ethnic Minority focus areas.Excluding Predominantly Non-Residential Areas from CFAsSome census block groups that meet one or both of the CFA criteria described above contain large, non-residential areas or low density residential areas. Such census block areas may have small residential neighborhoods surrounded by predominantly commercial or industrial land uses, or large areas of public land or as-yet undeveloped lands. For this reason, WFRC staff may adjust the boundaries of an CFA whose census block group population density is less than 500 persons per square mile, to exclude areas of those block groups that have large, predominantly non-residential land uses.Community Focus Area Update FrequencyThe geography for WFRC CFAs will be updated not less than every four years, preceding the project phasing period of the Regional Transportation Planning update cycle. The update will use the most recent version of the 5 year ACS dataset. The next update is expected in the summer of 2026 (the beginning of the 4th year for the 2027 RTP development process) and is expected to use the 2024 5-year ACS results that average results across 2020-2024.Footnotes:1. The 2019 version of WFRC CFAs used ‘Zero Car Households’ as a third factor. This factor is no longer included because of its geographic and statistical fluctuation over time in data reported by the American Community Survey. Additionally, ‘Zero Car households’ was observed to have a strong relationship with the other two CFA designation factors.2. The percentage threshold specified here is approximately one standard deviation above the regional mean for this indicator. Assuming a statistically normal distribution, approximately 16% of the overall set (i.e. census blocks, in this case) would fall above a one standard deviation threshold.3. Table B03002 includes information from both 'Race' and 'Hispanic or Latino Origin' identification questions asked as part of the Census Bureau's American Community Survey.
Facebook
TwitterEnvironmental Justice 2023 Set is comprised of two layers: Environmental Justice Block Groups 2023 and Environmental Justice Distressed Municipality 2023. All Census and ACS data used in the creation of these data are the latest available from the Census at time of calculation.
Environmental Justice Block Groups 2023 was created from Connecticut block group boundary data located in the Census Bureau's 2022 Block Group TIGER/Line Shapefiles. The poverty data used to determine which block groups qualified as EJ communities (see CT State statute 22a-20a) was based on the Census Bureau's 2021 ACS 5-year estimate. This poverty data was joined with the block group boundaries in ArcPro. Block groups in which the percent of the population below 200% of the federal poverty level was greater than or equal to 30.0 were selected and the resulting selection was exported as a new shapefile. The block groups were then clipped so that only those block groups outside of distressed municipalities were displayed.
Maintenance – This layer will be updated annually and will coincide with the annual distressed municipalities update (around August/September). The latest ACS 5-year estimate data should be used to update this layer.
Environmental Justice Distressed Municipalities 2023 was created from the Connecticut town boundary data located in the Census Bureau's 2022 TIGER/Line Shapefiles (County Subdivisions). From this shapefile, "select by attribute" was used to select the distressed municipalities by town name (note: the list of 2023 distressed municipalities was provided by the CT Department of Economic and Community Development). The selection was then exported a new shapefile. The “Union” tool was used to unite the new shapefile with tribal lands (American Indian Area Geography) boundary data from the 2020 TIGER/Line files. In the resulting layer, the tribal lands were deleted so only the distressed municipalities remained. Maintenance – This layer will be updated annually when the DECD produces its new list of distressed municipalities (around August/September).
Note: A distressed municipality, as designated by the Connecticut Department of Economic and Community Development, includes municipalities that no longer meet the threshold requirements but are still in a 5-year grace period. (See definition at CGS Sec. 32-9p(b).) Fitting into that grace period, ten towns continue to be eligible for distressed municipality benefits because they dropped off the list within the last five years. Those are Bristol, Enfield, Groton, Killingly, Naugatuck, New Haven, North Stonington, Plainfield, Preston, and Stratford.
Facebook
TwitterCreated for the 2023-2025 State of Black Los Angeles County (SBLA) interactive report. To learn more about this effort, please visit the report home page at https://ceo.lacounty.gov/ardi/sbla/. For more information about the purpose of this data, please contact CEO-ARDI. For more information about the configuration of this data, please contact ISD-Enterprise GIS. table name indicator name Universe timeframe source race notes source url
below_fpl_perc below 100% federal poverty level percent (%) Population for whom poverty status is determined 2016-2020 American Community Survey - S1703 Race alone; White is Non-Hispanic White https://data.census.gov/cedsci/table?g=0500000US06037&tid=ACSST5Y2020.S1703
below_200fpl_perc below 200% federal poverty level percent (%) Total population 2021 Population and Poverty Estimates of Los Angeles County Tract-City Splits by Age, Sex and Race-Ethnicity for July 1, 2021, Los Angeles, CA, April 2022 All races are Non-Hispanic LA County eGIS-Demography
median_income Median income (household) Households 2016-2020 American Community Survey - S1903 All races are Non-Hispanic; Race is that of householder https://data.census.gov/cedsci/table?q=S1903&g=0500000US06037
percapita_income Mean Per Capita Income Total population 2016-2020 American Community Survey - S1902 Race alone; White is Non-Hispanic White https://data.census.gov/cedsci/table?g=0500000US06037&tid=ACSST5Y2020.S1902
college_degree_any College degree AA, BA, or Higher % Population 25 years and over 2021 American Community Survey - B15002B-I Race alone; White is Non-Hispanic White https://data.census.gov/cedsci/table?q=b15002b&g=0500000US06037
graduate_professional_degree Graduate or professional degree % Population 25 years and over 2021 American Community Survey - B15002B-I Race alone; White is Non-Hispanic White https://data.census.gov/cedsci/table?q=b15002b&g=0500000US06037
unemployment_rate Unemployment Rate Population 16 years and over 2016-2020 American Community Survey - S2301 Race alone; White is Non-Hispanic White https://data.census.gov/cedsci/table?q=S2301%3A%20EMPLOYMENT%20STATUS&g=0500000US06037&tid=ACSST5Y2020.S2301
below_300fpl_food_insecure Percent of Households with Incomes <300% Federal Poverty Level That Are Food Insecure Percent of Households with Incomes <300% Federal Poverty Level 2018 Los Angeles County Health Survey
https://publichealth.lacounty.gov/ha/LACHSDataTopics2018.htm
below_185fpl_snap Percent of Adults (Ages 18 Years and Older) with Household Incomes <185% Federal Poverty Level Who Are Currently Receiving Supplemental Nutrition Assistance Program (SNAP), Also Known as Calfresh Adults (Ages 18 Years and Older) with Household Incomes <185% Federal Poverty Level Los Angeles County Health Survey 20182018 https://publichealth.lacounty.gov/ha/LACHSDataTopics2018.htm
B24010 Sex by Occupation for the Civilian Employed Population 16 Years and Over Civilian employed population 16 years and over
Facebook
TwitterEnvironmental Justice 2024 Set is comprised of two layers: Environmental Justice Block Groups 2024 and Environmental Justice Distressed Municipality 2024. All Census and ACS data used in the creation of these data are the latest available from the Census at time of calculation.
Environmental Justice Block Groups 2024 was created from Connecticut block group boundary data located in the Census Bureau's 2024 Block Group TIGER/Line Shapefiles. The poverty data used to determine which block groups qualified as EJ communities (see CT State statute 22a-20a) was based on the Census Bureau's 2023 ACS 5-year estimate. This poverty data was joined with the block group boundaries in ArcPro. Block groups in which the percent of the population below 200% of the federal poverty level was greater than or equal to 30.0 were selected and the resulting selection was exported as a new shapefile. The block groups were then clipped so that only those block groups outside of distressed municipalities were displayed.
Maintenance – This layer will be updated annually and will coincide with the annual distressed municipalities update (around August/September). The latest ACS 5-year estimate data should be used to update this layer.
Environmental Justice Distressed Municipalities 2024 was created from the Connecticut town boundary data located in the Census Bureau's 2024 TIGER/Line Shapefiles (County Subdivisions). From this shapefile, "select by attribute" was used to select the distressed municipalities by town name (note: the list of 2024 distressed municipalities was provided by the CT Department of Economic and Community Development). The selection was then exported a new shapefile. The “Union” tool was used to unite the new shapefile with tribal lands (American Indian Area Geography) boundary data from the 2024 TIGER/Line files. In the resulting layer, the tribal lands were deleted so only the distressed municipalities remained. Maintenance – This layer will be updated annually when the DECD produces its new list of distressed municipalities.
Note: A distressed municipality, as designated by the Connecticut Department of Economic and Community Development, includes municipalities that no longer meet the threshold requirements but are still in an eligibility grace period. (See definition at CGS Sec. 32-9p(b).) Fitting into that grace period, nine towns continue to be eligible for distressed municipality benefits. Those are Bristol, East Haven, Groton, Killingly, New Haven, North Stonington, Preston, Stratford, Voluntown.
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.