94 datasets found
  1. d

    Connecticut Nurses Census 1917

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Mar 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Connecticut Nurses Census 1917 [Dataset]. https://catalog.data.gov/dataset/connecticut-nurses-census-1917
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    Connecticut Nurses Census 1917 The Connecticut Nurses Census is a part of State Archives Record Group 029: Records of the Military Census Department. The census forms may give basic details such as birthplace, age, marital status, maiden name, and current residence, as well as more specific information such as the name of the nursing school attended, medical specialty, and year of licensure. This census included the registration of both female and male nurses. This index includes the name, birthplace, age, current residence, form number and box number. If a field is left blank, it is because the person who submitted the form did not answer that question (e.g. age, anybody!) People may request a copy of a census form by contacting us by telephone (860) 757-6580 or email. Please include the name of the individual and form number.

  2. g

    Connecticut Nurses Census 1917 | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Connecticut Nurses Census 1917 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_connecticut-nurses-census-1917/
    Explore at:
    Area covered
    Connecticut
    Description

    Connecticut Nurses Census 1917 The Connecticut Nurses Census is a part of State Archives Record Group 029: Records of the Military Census Department. The census forms may give basic details such as birthplace, age, marital status, maiden name, and current residence, as well as more specific information such as the name of the nursing school attended, medical specialty, and year of licensure. This census included the registration of both female and male nurses. This index includes the name, birthplace, age, current residence, form number and box number. If a field is left blank, it is because the person who submitted the form did not answer that question (e.g. age, anybody!) People may request a copy of a census form by contacting us by telephone (860) 757-6580 or email. Please include the name of the individual and form number.

  3. g

    Census of Population, 1880 [United States]: Public Use Sample (1 in 1000...

    • search.gesis.org
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2001). Census of Population, 1880 [United States]: Public Use Sample (1 in 1000 Preliminary Subsample) - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR09474
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de445119https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de445119

    Area covered
    United States
    Description

    Abstract (en): This data collection provides a preliminary subsample of the 1880 Public Use Sample drawn from census enumeration forms. The file contains two types of records: family and person. Each household record is followed by a record for each person in the family. This collection contains information about size of family, number of persons and families in dwelling, and geographic location of each household. Information on individuals includes demographic characteristics, civil condition, occupation, health, education, and nativity. Manuscript census records from 1880 for the 38 United States, the District of Columbia, and the Dakota Territory. This collection is a nationally representative--although clustered--1 in 1000 preliminary subsample of the United States population in 1880. The subsample is based on every tenth microfilm reel of enumeration forms (there are a total of 1,454 reels) and, within each reel, on the census page itself. In terms of the Public Use Sample as a whole, a sample density of 1 person per 100 was chosen so that a single sample point was randomly generated for every two census pages. Sample points were chosen for inclusion in the collection only if the individual selected was the first person listed in the dwelling. Under this procedure each dwelling, family, and individual in the population had a 1 in 100 probability of inclusion in the Public Use Sample. The complete sample, which will be released by the principal investigators in December 1993, will contain approximately 500,000 individuals living in 100,000 families, or 1 percent of the United States population in 1880. Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health (HD25839). (1) This dataset has two levels. The first level ("F" Record Type) contains 29 variables for each of 10,126 families. The second level ("P" Record Type) contains 45 variables for each of 48,786 individuals residing in those families. (2) The data contain blanks and alphabetic characters. (3) Users will note some differences in code frequencies between certain variables in this collection and the totals listed in the documentation. (4) This collection is superseded by CENSUS OF POPULATION, 1880 [UNITED STATES]: PUBLIC USE SAMPLE (ICPSR 6460).

  4. o

    Data from: Census of Population, 1910 [United States]: Oversample of...

    • explore.openaire.eu
    • icpsr.umich.edu
    Updated Dec 4, 1990
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S. Philip Morgan; Douglas Ewbank (1990). Census of Population, 1910 [United States]: Oversample of Black-headed Households [Dataset]. http://doi.org/10.3886/icpsr09453
    Explore at:
    Dataset updated
    Dec 4, 1990
    Authors
    S. Philip Morgan; Douglas Ewbank
    Area covered
    United States
    Description

    Designed to facilitate analysis of the status of Blacks around the turn of the century, this oversample of Black-headed households in the United States was drawn from the 1910 manuscript census schedules. The sample complements the 1/250 Public Use Sample of the 1910 census manuscripts collected by Samuel H. Preston at the University of Pennsylvania: CENSUS OF POPULATION, 1910 [UNITED STATES]: PUBLIC USE SAMPLE (ICPSR 9166). Part 1, Household Records, contains a record for each household selected in the sample and supplies variables describing the location, type, and composition of the households. Part 2, Individual Records, contains a record for each individual residing in the sampled households and includes information on demographic characteristics, occupation, literacy, nativity, ethnicity, and fertility. Manuscript census records for 1910 from counties with at least 10 percent of the population African-American (Negro, Black, or Mulatto) located in nine states where a large number of counties had at least this same proportion of African-Americans (Maryland, Virginia, North Carolina, Florida, Kentucky, Tennessee, Arkansas, Louisiana, and Texas). The four states with the largest population of Blacks (South Carolina, Alabama, Mississippi, and Georgia) were excluded from the oversample because the 1/250 Public Use Sample (referred to above) provided sufficient cases for most analyses. Sampling was carried out using computer software that randomly selected households based on the manuscript census microfilm reel number, sequence, and page and line number, with two different sampling fractions. Counties in Maryland, Kentucky, and Texas were sampled using a 0.01 sampling fraction, while a 0.005 sampling fraction was employed in Virginia, North Carolina, Florida, Tennessee, and Arkansas. In Louisiana, both fractions were utilized to test optimum sampling fractions. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.. The data contain blanks and alphabetic characters. This oversample can be combined with the 1/250 Public Use Sample by differential weighting of households (or individuals) by county of enumeration as described in the User's Guide. Datasets: DS0: Study-Level Files DS1: Household Records DS2: Individual Records

  5. Z

    Data from: 1805-1898 Census Records of Lausanne : a Long Digital Dataset for...

    • data.niaid.nih.gov
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rappo, Lucas (2023). 1805-1898 Census Records of Lausanne : a Long Digital Dataset for Demographic History [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7711639
    Explore at:
    Dataset updated
    Mar 21, 2023
    Dataset provided by
    Kramer, Marion
    Petitpierre, Remi
    Rappo, Lucas
    di Lenardo, Isabella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lausanne
    Description

    Context. This historical dataset stems from the project of automatic extraction of 72 census records of Lausanne, Switzerland. The complete dataset covers a century of historical demography in Lausanne (1805-1898), which corresponds to 18,831 pages, and nearly 6 million cells.

    Content. The data published in this repository correspond to a first release, i.e. a diachronic slice of one register every 8 to 9 years. Unfortunately, the remaining data are currently under embargo. Their publication will take place as soon as possible, and at the latest by the end of 2023. In the meantime, the data presented here correspond to a large subset of 2,844 pages, which already allows to investigate most research hypotheses.

    Description. The population censuses, digitized by the Archives of the city of Lausanne, continuously cover the evolution of the population in Lausanne throughout the 19th century, starting in 1805, with only one long interruption from 1814 to 1831. Highly detailed, they are an invaluable source for studying migration, economic and social history, and traces of cultural exchanges not only with Bern, but also with France and Italy. Indeed, the system of tracing family origin, specific to Switzerland, allows to follow the migratory movements of families long before the censuses appeared. The bourgeoisie is also an essential economic tracer. In addition, censuses extensively describe the organization of the social fabric into family nuclei, around which gravitate various boarders, workers, servants or apprentices, often living in the same apartment with the family.

    Production. The structure and richness of censuses have also provided an opportunity to develop automatic methods for processing structured documents. The processing of censuses includes several steps, from the identification of text segments to the restructuring of information as digital tabular data, through Handwritten Text Recognition and the automatic segmentation of the structure using neural networks. Please note that the detailed extraction methodology, as well as the complete evaluation of performance and reliability is published in:

    Petitpierre R., Rappo L., Kramer M. (2023). An end-to-end pipeline for historical censuses processing. International Journal on Document Analysis and Recognition (IJDAR). doi: 10.1007/s10032-023-00428-9

    Data structure. The data are structured in rows and columns, with each row corresponding to a household. Multiple entries in the same column for a single household are separated by vertical bars ⟨|⟩. The center point ⟨·⟩ indicates an empty entry. For some columns (e.g., street name, house number, owner name), an empty entry indicates that the last non-empty value should be carried over. The page number is in the last column.

    Liability. The data presented here are not curated nor verified. They are the raw results of the extraction, the reliability of which was thoroughly assessed in the above-mentioned publication. We insist on the fact that for any reuse of this data for research purposes, the implementation of an appropriate methodology is necessary. This may typically include string distance heuristics, or statistical methodologies to deal with noise and uncertainty.

  6. Population and Housing Census 2006 - Nigeria

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Population Commission (2019). Population and Housing Census 2006 - Nigeria [Dataset]. https://dev.ihsn.org/nada/catalog/study/NGA_2006_PHC_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    National Population Commissionhttps://nationalpopulation.gov.ng/
    Time period covered
    2006
    Area covered
    Nigeria
    Description

    Abstract

    The primary mission of the 2006 Population and Housing Census (PHC) of Nigeria was to provide data for policy-making, evidence-based planning and good governance. The Government at all tiers, researchers, the academia, civil society organizations and the international agencies will find the sets of socio-demographic data useful in formulating developmental policies and planning. The 2006 data will certainly provide benchmarks for monitoring the Millennium Development Goals (MDGs). Enumeration in the 2006 PHC was conducted between March 21st and 27th 2006. It was designed to collect information on the quality of the population and housing, under the following broad categories: demographic and social, education, disability, household composition, economic activity, migration, housing and amenities, mortality and fertility. The results of the exercise are being released as per the Commission's Tabulation Plan which began with the release of the total enumerated persons by administrative areas in the country in the Official Gazette of the Federal Republic of Nigeria No.2, Vol 96 of February 2,2009 and followed with the release of Priority Tables that provide some detailed characteristics of the population of Nigeria by State and LGA.

    Geographic coverage

    National

    Analysis unit

    Individuals Households

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Census 2006 Processing: The Technology and Methodology:-

    Unlike the data capture method used for the country’s previous censuses, where information from the census forms are typed into the computer system, data capture for census 2006 was carried out by OMR/OCR/ICR systems where questionnaires are scanned through high speed optical scanners. The choice of the scanning system was because it is faster and more accurate than the data keying method.

    OMR/OCR/ICR Technology

    Definition of terms

    • OMR (Optical Mark Recognition) - This means the ability of the scanning machine to detect pencil marks made on the questionnaires by the Enumerators in accordance with the responses given by the respondents.
    • OCR (Optical Character Recognition) - This means the ability of the scanning machine to recognize machine printed characters on the questionnaires.
    • ICR (Intelligent Character Recognition) - This means the ability of the scanner to recognize characters hand written by the Enumerators in accordance with the responses given by the respondents.

    Processing Procedures of Census 2006 at the DPCs:- Data processing took place in the Commission’s seven (7) Data Processing Centres located in different geographical zones in the country. There was absolute uniformity in the processing procedures in the seven DPCs.

    (a) Questionnaire Retrieval/Archiving Questionnaires from the fields were taken directly from the Local Government Areas to designated DPCs. The forms on arrival at the DPCs were counted, archived and labeled. Retrieval of the questionnaires at the DPCs were carried out based on the EA frame received from the Cartography Department. Necessary Transmittal Forms are completed on receipt of the Forms at the DPCs. The Transmittal Forms are also used to keep track of questionnaires movement within the DPC.

    (b) Forms Preparation The scanning machine has been designed to handle A4 size paper. And the Census form being twice that size has to be split into two through the dotted lines at the middle of the form. This forms preparation procedure is to get the questionnaires, for each Enumeration Areas (EAs), ready for scanning. There is a Batch Header to identify each batch.

    (c) Scanning Each Batch on getting to the Scanning Room was placed on joggers (a vibrating machine)to properly align the forms, and get rid of dust or particles that might be on the forms.

    The forms are thereafter fed into the scanner. There were security codes in form of bar codes on each questionnaire to identify its genuineness. There was electronic editing and coding for badly coded or poorly shaded questionnaires by the Data Editors. Torn, stained or mutilated forms are rejected by the scanner. These categories of forms were later manually keyed into the system.

    Re-archiving of Scanned Forms:- Scanned forms were placed in their appropriate marked envelopes in batches, and thereafter returned to the Archiving Section for re-archiving.

    Data Output from the Scanning Machine:- The OMR/OCR Software interprets the output from the scanner and translates it into an XML file from where it is further translated into the desired ASCII output that is compatible for use by the CSPro Package for further processing and tabulation.

    Data back-up and transfer:- After being sure that the data are edited for each EA batch in an LGA, data then was exported to the SAN (Storage Area Network) of the Server. Two copies of images of the questionnaires for each EA copied to the LTO tapes as backup and then transferred to the Headquarters. The ASCII data files for each LGA are zipped and encrypted, and thereafter transfer to the Data Validation Unit (DVU) at the Headquarters in Abuja.

    Data appraisal

    Data collation and validation:- The Data Validation Unit at the Headquarters was responsible for collating these data into EAs, LGAs, States and National levels. The data are edited/validated for consistency errors and invalid entries. The Census and Survey Processing (CSPro) software is used for this process. The edited, and error free data are thereafter processed into desired tables.

    Activities of the Data Validation unit (DVU):-

    Decryption of each LGA Data File Concatenation/merging of Data Files Check each EA batch file for EA completeness within an LGA and State Check for File/Data Structure Check for Range and Invalid Data items Check for Blank and empty questionnaire Check for inter and intra record consistency Check for Skip Patterns Perform Data Validation and Imputation Generate Statistics Report of each function/activity Generate Statistical Tables on LGA, State and National levels.

  7. p

    Population and Housing Census 2005 - Palau

    • microdata.pacificdata.org
    Updated Aug 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2013). Population and Housing Census 2005 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/27
    Explore at:
    Dataset updated
    Aug 18, 2013
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2005
    Area covered
    Palau
    Description

    Abstract

    The 2005 Republic of Palau Census of Population and Housing will be used to give a snapshot of Republic of Palau's population and housing at the mid-point of the decade. This Census is also important because it measures the population at the beginning of the implementation of the Compact of Free Association. The information collected in the census is needed to plan for the needs of the population. The government uses the census figures to allocate funds for public services in a wide variety of areas, such as education, housing, and job training. The figures also are used by private businesses, academic institutions, local organizations, and the public in general to understand who we are and what our situation is, in order to prepare better for our future needs.

    The fundamental purpose of a census is to provide information on the size, distribution and characteristics of a country's population. The census data are used for policymaking, planning and administration, as well as in management and evaluation of programmes in education, labour force, family planning, housing, health, transportation and rural development. A basic administrative use is in the demarcation of constituencies and allocation of representation to governing bodies. The census is also an invaluable resource for research, providing data for scientific analysis of the composition and distribution of the population and for statistical models to forecast its future growth. The census provides business and industry with the basic data they need to appraise the demand for housing, schools, furnishings, food, clothing, recreational facilities, medical supplies and other goods and services.

    Geographic coverage

    A hierarchical geographic presentation shows the geographic entities in a superior/subordinate structure in census products. This structure is derived from the legal, administrative, or areal relationships of the entities. The hierarchical structure is depicted in report tables by means of indentation. The following structure is used for the 2005 Census of the Republic of Palau:

    Republic of Palau State Hamlet/Village Enumeration District Block

    Analysis unit

    Individuals Families Households General Population

    Universe

    The Census covered all the households and respective residents in the entire country.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Not applicable to a full enumeration census.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2005 Palau Census of Population and Housing comprises three parts: 1. Housing - one form for each household 2. Population - one for for each member of the household 3. People who have left home - one form for each household.

    Cleaning operations

    Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.

    Processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as "Don't know" or "NA" were considered unacceptable in certain quantities and/or in conjunction with other data omissions.

    As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.

    Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.

    Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.

    Sampling error estimates

    Sampling Error is not applicable to full enumeration censuses.

    Data appraisal

    In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.

    To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

  8. d

    Maryland Notices of Intent to Foreclose by Census Tract

    • catalog.data.gov
    • opendata.maryland.gov
    Updated Jan 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). Maryland Notices of Intent to Foreclose by Census Tract [Dataset]. https://catalog.data.gov/dataset/maryland-notices-of-intent-to-foreclose-by-census-tract
    Explore at:
    Dataset updated
    Jan 10, 2025
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    Provides the annual total number of Maryland Notices of Intent to Foreclose (NOI) by census tract as reported to the Office of Financial Regulation (OFR). For more information and definitions, please see OFR's Foreclosure Data Tracker: https://www.labor.maryland.gov/finance/consumers/frforeclosuredatatracker.shtml. NOTE: The data provided is for informational and research purposes only and is not intended to guide policy or provide specific outreach targets. The data provided is compiled from third-party filings with the OFR pursuant to applicable law. These third-party filings may contain duplicates and other errors and the OFR cannot guarantee the accuracy and quality of the submissions upon which the data is based. The data does not constitute foreclosure case records and may differ from the official foreclosure records contained in the court records of the State of Maryland. In addition, errors in reported street addresses mean that some NOIs are not able to be matched with a census tract. This may result in a different total number of annual NOIs than the total number in other related reports. OFR makes no express or implied warranties or representations concerning the data contained in this report. Blank values indicate census tracts with fewer than 10 NOIs.

  9. p

    Population and Housing Census 2000 - Palau

    • microdata.pacificdata.org
    • catalog.ihsn.org
    Updated May 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2019). Population and Housing Census 2000 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/232
    Explore at:
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2000
    Area covered
    Palau
    Description

    Abstract

    The 2000 Republic of Palau Census of Population and Housing was the second census collected and processed entirely by the republic itself. This monograph provides analyses of data from the most recent census of Palau for decision makers in the United States and Palau to understand current socioeconomic conditions. The 2005 Census of Population and Housing collected a wide range of information on the characteristics of the population including demographics, educational attainments, employment status, fertility, housing characteristics, housing characteristics and many others.

    Geographic coverage

    National

    Analysis unit

    • Household;
    • Individual.

    Universe

    The 1990, 1995 and 2000 censuses were all modified de jure censuses, counting people and recording selected characteristics of each individual according to his or her usual place of residence as of census day. Data were collected for each enumeration district - the households and population in each enumerator assignment - and these enumeration districts were then collected into hamlets in Koror, and the 16 States of Palau.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    No sampling - whole universe covered

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2000 censuses of Palau employed a modified list-enumerate procedure, also known as door-to-door enumeration. Beginning in mid-April 2000, enumerators began visiting each housing unit and conducted personal interviews, recording the information collected on the single questionnaire that contained all census questions. Follow-up enumerators visited all addresses for which questionnaires were missing to obtain the information required for the census.

    Cleaning operations

    The completed questionnaires were checked for completeness and consistency of responses, and then brought to OPS for processing. After checking in the questionnaires, OPS staff coded write-in responses (e.g., ethnicity or race, relationship, language). Then data entry clerks keyed all the questionnaire responses. The OPS brought the keyed data to the U.S. Census Bureau headquarters near Washington, DC, where OPS and Bureau staff edited the data using the Consistency and Correction (CONCOR) software package prior to generating tabulations using the Census Tabulation System (CENTS) package. Both packages were developed at the Census Bureau's International Programs Center (IPC) as part of the Integrated Microcomputer Processing System (IMPS).

    The goal of census data processing is to produce a set of data that described the population as clearly and accurately as possible. To meet this objective, crew leaders reviewed and edited questionnaires during field data collection to ensure consistency, completeness, and acceptability. Census clerks also reviewed questionnaires for omissions, certain inconsistencies, and population coverage. Census personnel conducted a telephone or personal visit follow-up to obtain missing information. The follow-ups considered potential coverage errors as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.

    Following field operations, census staff assigned remaining incomplete information and corrected inconsistent information on the questionnaires using imputation procedures during the final automated edit of the data. The use of allocations, or computer assignments of acceptable data, occurred most often when an entry for a given item was lacking or when the information reported for a person or housing unit on an item was inconsistent with other information for that same person or housing unit. In all of Palau’s censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in place of blanks or unacceptable entries enhanced the usefulness of the data.

    Sampling error estimates

    Human and machine-related errors occur in any large-scale statistical operation. Researchers generally refer to these problems as non-sampling errors. These errors include the failure to enumerate every household or every person in a population, failure to obtain all required information from residents, collection of incorrect or inconsistent information, and incorrect recording of information. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires. To reduce various types of non-sampling errors, Census office personnel used several techniques during planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

    Census staff implemented several coverage improvement programs during the development of census enumeration and processing strategies to minimize under-coverage of the population and housing units. A quality assurance program improved coverage in each census. Telephone and personal visit follow-ups also helped improve coverage. Computer and clerical edits emphasized improving the quality and consistency of the data. Local officials participated in post-census local reviews. Census enumerators conducted additional re-canvassing where appropriate.

  10. a

    Nonemployer Statistics - Counties 2019

    • covid19-uscensus.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Dec 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2020). Nonemployer Statistics - Counties 2019 [Dataset]. https://covid19-uscensus.hub.arcgis.com/datasets/nonemployer-statistics-counties-2019
    Explore at:
    Dataset updated
    Dec 28, 2020
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows data on the number of establishments and revenue for select 2-digit North American Industry Classification System (NAICS) sectors and for NAICS 00, All Sectors. This is shown by county and state boundaries. The full NES data set (available at census.gov) is updated annually to contain the most currently released NES data, and contains estimates and measure of reliability. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Current Vintage: 2019CBP Table: NS1900NESData downloaded from: Census Bureau's API for Nonemployer StatisticsDate of API call: December 19, 2022National Figures: data.census.govThe United States Census Bureau's Nonemployer Statistics Program (NES):About this ProgramDataTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census Bureau and NES when using this data.Data Processing Notes:Boundaries come from the US Census Bureau TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census Bureau. These are Census Bureau boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 51 records - all US states, Washington D.C..Blank values represent industries where there either were no businesses in that industry and that geography OR industries where the data had to be withheld to avoid disclosing data for individual companies. Users should visit data.census.gov or Census Business Builder for more details on these withheld records.Data shown in thousands of dollars are indicated by '($1000)' in the field aliasing. Average and Totals include NAICS 11.

  11. United States Imports: Customs: sa: IS: Blank Tapes, Audio & Visual

    • ceicdata.com
    Updated Mar 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United States Imports: Customs: sa: IS: Blank Tapes, Audio & Visual [Dataset]. https://www.ceicdata.com/en/united-states/trade-statistics-census-basis-seasonally-adjusted-imports-by-enduse-commodity/imports-customs-sa-is-blank-tapes-audio--visual
    Explore at:
    Dataset updated
    Mar 29, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2017 - Mar 1, 2018
    Area covered
    United States
    Variables measured
    Merchandise Trade
    Description

    United States Imports: Customs: sa: IS: Blank Tapes, Audio & Visual data was reported at 38.000 USD mn in May 2018. This records a decrease from the previous number of 41.000 USD mn for Apr 2018. United States Imports: Customs: sa: IS: Blank Tapes, Audio & Visual data is updated monthly, averaging 162.000 USD mn from Dec 1993 (Median) to May 2018, with 294 observations. The data reached an all-time high of 405.000 USD mn in Sep 2006 and a record low of 19.000 USD mn in Jan 2018. United States Imports: Customs: sa: IS: Blank Tapes, Audio & Visual data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s USA – Table US.JA006: Trade Statistics: Census Basis: Seasonally Adjusted: Imports by End-Use Commodity.

  12. i

    Census of Population and Housing 2005 - Palau

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2019). Census of Population and Housing 2005 - Palau [Dataset]. https://datacatalog.ihsn.org/catalog/4213
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2005
    Area covered
    Palau
    Description

    Abstract

    The 2005 Census of Population and Housing was the third comprehensive data collection of population and housing characteristics taken by the Republic since Compact Implementation in October 1994. The 2005 Census of Palau had two volumes. This first volume contained the basic tables, which can be used instantly for planning and policy determination. A second volume, the Census monograph, contained analyses of trends and comparisons of the States.

    Geographic coverage

    National

    Analysis unit

    Individuals Families Households General Population

    Universe

    The Census covered all the households and respective residents in the entire country.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Not applicable to a full enumeration census. For details please refer to the attached Basic Tables and Monograph.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.

    Response rate

    In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors do occur. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.

    To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

    Sampling error estimates

    Sampling Error is not applicable to censuses; however, a processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as “Don't know” or “NA” were considered unacceptable in certain quantities and/or in conjunction with other data omissions.

    As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.

    Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.

    Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.

    Data appraisal

    In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.

    To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

  13. D

    3-digit occupation code images from the Norwegian census of 1950 - Manual...

    • dataverse.no
    • dataverse.azure.uit.no
    • +1more
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataverseNO (2023). 3-digit occupation code images from the Norwegian census of 1950 - Manual review dataset [Dataset]. http://doi.org/10.18710/LYXKN1
    Explore at:
    text/comma-separated-values(54006), txt(7270), zip(1860373835)Available download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    DataverseNO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1950
    Area covered
    Norway
    Dataset funded by
    The Research Council of Norway
    UiT The Arctic University of Norway
    Description

    This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).

  14. County Business Patterns (CBP) from Economic Census 2017

    • ars-geolibrary-usdaars.hub.arcgis.com
    • hub.arcgis.com
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). County Business Patterns (CBP) from Economic Census 2017 [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/maps/1f90850b9fd84b219917a8b278ea626c
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains data on the number of establishments, total employment, and total annual payroll for for 20 selected 4- and 5-digit North American Industry Classification System (NAICS) codes. This is shown by county and state boundaries. The full CBP data set (available at census.gov) is updated annually to contain the most currently released CBP data. This layer is symbolized to show the total number of establishments depicted by size, and the average annual pay per employee, depicted by color.

    Current Vintage: 2017

    CBP Table: CB1700CBP

    Data downloaded from: Census Bureau's API for County Business Patterns

    Date of API call: June 1, 2019

    The United States Census Bureau's County Business Patterns Program (CBP):

    About this Program Data Technical Documentation News & Updates

    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census Bureau and CBP when using this data.

    Data Processing Notes: Boundaries come from the US Census Bureau TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census Bureau. These are Census Bureau boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 56 records - all US states, Washington D.C., Puerto Rico, and U.S. Island Areas Blank values represent industries where there either were no businesses in that industry and that geography OR industries where the data had to be withheld to avoid disclosing data for individual companies. Users should visit data.census.gov or Census Business Builder for more details on these withheld records.

  15. Economic Census - Counties 2017

    • covid19-uscensus.hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    Updated Dec 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2020). Economic Census - Counties 2017 [Dataset]. https://covid19-uscensus.hub.arcgis.com/datasets/economic-census-counties-2017
    Explore at:
    Dataset updated
    Dec 28, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows data on the value of sales, shipments, receipts, or revenue for the 2-digit North American Industry Classification System (NAICS) sector codes. This is shown by county and state boundaries. This program is updated annually to contain the most currently released EC data, and contains estimates and measure of reliability. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Current Vintage: 2017CBP Table: EC1700BASICData downloaded from: Census Bureau's API for Economic CensusDate of API call: June 1, 2020National Figures: data.census.govThe United States Census Bureau's Economic Census Program (EC):About this ProgramDataTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census Bureau and CBP when using this data.Data Processing Notes:This layer is updated automatically when the most current vintage of CBP data are released each year, usually in June. The layer always contains the latest available CBP estimates.Boundaries come from the US Census Bureau TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census Bureau. These are Census Bureau boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 51 records - all US states and Washington D.C.Blank values represent industries where there either were no businesses in that industry and that geography OR industries where the data had to be withheld to avoid disclosing data for individual companies. Users should visit data.census.gov or Census Business Builder for more details on these withheld records.

  16. S

    2023 Census change in occupied and unoccupied private dwellings by regional...

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census change in occupied and unoccupied private dwellings by regional council [Dataset]. https://datafinder.stats.govt.nz/layer/119480-2023-census-change-in-occupied-and-unoccupied-private-dwellings-by-regional-council/
    Explore at:
    shapefile, kml, geodatabase, geopackage / sqlite, csv, pdf, mapinfo mif, mapinfo tab, dwgAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains occupied and unoccupied private dwelling counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the occupied and unoccupied private dwelling counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    Map shows the percentage change in number of occupied and unoccupied private dwellings between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Dwelling occupancy status quality rating

    Dwelling occupancy status is rated as high quality.

    Dwelling occupancy status – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Dwelling type quality rating

    Dwelling type is rated as moderate quality.

    Dwelling type – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  17. Census 2011 - South Africa

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Census 2011 - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/study/ZAF_2011_PHC_v01_M
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2011
    Area covered
    South Africa
    Description

    Abstract

    Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.

    Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.

    Geographic coverage

    National

    Analysis unit

    Households, Individuals

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.

    The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.

    In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.

    Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.

    1. The Household Questionnaire is divided into the following sections:
    2. Household identification particulars
    3. Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga

    4. The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:

    5. Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.

    6. The Questionnaire for Institutions (English) is divided into the following sections:

    7. Particulars of the institution

    8. Availability of piped water for the institution

    9. Main source of water for domestic use

    10. Main type of toilet facility

    11. Type of energy/fuel used for cooking, heating and lighting at the institution

    12. Disposal of refuse or rubbish

    13. Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)

    14. List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)

    15. The Post Enumeration Survey Questionnaire (English)

    These questionnaires are provided as external resources.

    Cleaning operations

    Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).

    The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.

    Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.

    The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank

    Data appraisal

    Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring

  18. S

    2023 Census change in occupied and unoccupied private dwellings by...

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census change in occupied and unoccupied private dwellings by territorial authority local board [Dataset]. https://datafinder.stats.govt.nz/layer/119482-2023-census-change-in-occupied-and-unoccupied-private-dwellings-by-territorial-authority-local-board/
    Explore at:
    geopackage / sqlite, csv, mapinfo tab, pdf, shapefile, geodatabase, dwg, mapinfo mif, kmlAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains occupied and unoccupied private dwelling counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the occupied and unoccupied private dwelling counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by territorial authority and Auckland local board

    Map shows the percentage change in number of occupied and unoccupied private dwellings between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Dwelling occupancy status quality rating

    Dwelling occupancy status is rated as high quality.

    Dwelling occupancy status – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Dwelling type quality rating

    Dwelling type is rated as moderate quality.

    Dwelling type – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  19. d

    ACS 1-Year Business Characteristics DC

    • catalog.data.gov
    • opendata.dc.gov
    • +4more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 1-Year Business Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-1-year-business-characteristics-dc
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    This layer contains data on the number of employees and the number of establishments for selected 2-digit North American Industry Classification System (NAICS) codes from the the United States Census Bureau's County Business Patterns Program (CBP). This is shown by District boundaries. The full CBP data set (available at census.gov) is updated annually to contain the most currently released CBP data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Current Vintage: 2022 CBP Table: CB2000CBP. Data downloaded from: Census Bureau's API for County Business Patterns. Date of API call: January 2, 2025. Please cite the Census Bureau and CBP when using this data. Data Processing Notes: Boundaries come from the US Census Bureau TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census Bureau. Downloaded data processed by the Office of Planning on R statistical software and ESRI ArcGIS Desktop. Blank values represent industries where there either were no businesses in that industry and that geography OR industries where the data had to be withheld to avoid disclosing data for individual companies. Users should visit data.census.gov for details on these withheld records.

  20. c

    Grandparents - Counties 2015-2019

    • covid19.census.gov
    • covid19-uscensus.hub.arcgis.com
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Grandparents - Counties 2015-2019 [Dataset]. https://covid19.census.gov/datasets/USCensus::grandparents-counties-2015-2019/about
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Grandparents. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show Total grandchildren in care of Grandparents. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): DP02Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.ct.gov (2025). Connecticut Nurses Census 1917 [Dataset]. https://catalog.data.gov/dataset/connecticut-nurses-census-1917

Connecticut Nurses Census 1917

Explore at:
Dataset updated
Mar 29, 2025
Dataset provided by
data.ct.gov
Area covered
Connecticut
Description

Connecticut Nurses Census 1917 The Connecticut Nurses Census is a part of State Archives Record Group 029: Records of the Military Census Department. The census forms may give basic details such as birthplace, age, marital status, maiden name, and current residence, as well as more specific information such as the name of the nursing school attended, medical specialty, and year of licensure. This census included the registration of both female and male nurses. This index includes the name, birthplace, age, current residence, form number and box number. If a field is left blank, it is because the person who submitted the form did not answer that question (e.g. age, anybody!) People may request a copy of a census form by contacting us by telephone (860) 757-6580 or email. Please include the name of the individual and form number.

Search
Clear search
Close search
Google apps
Main menu