5 datasets found
  1. u

    Analysis of volatility spillovers in the stock, currency and goods market...

    • researchdata.up.ac.za
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye (2023). Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets [Dataset]. http://doi.org/10.25403/UPresearchdata.22187701.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    South African monthly The FTSE/JSE All Share Index data was procured from Bloomberg and the nominal effective exchange rate (NEER) from South African Reserve Bank (SARB) database, where the data has been seasonally adjusted specifying 2015 as the base year. Volatility measures in these markets are generated through a multivaraite EGARCH model in the WinRATS software. South African monthly consumer price index (CPI) data was procured from the International Monetary Fund’s International Financial Statistics (IFS) database, where the data has been seasonally adjusted, specifying 2010 as the base year. The inflation rate is constructed by taking the year-on-year changes in the monthly CPI figures. Inflation uncertainty was generated through the GARCH model in Eviews software. The following South African macroeconomic variables were procured from the SARB: real industrial production (IP), which is used as a proxy for real GDP, real investment (I), real consumption (C), inflation (CPI), broad money (M3), the 3-month treasury bill rate (TB3) and the policy rate (R), a measure of U.S. EPU developed by Baker et al. (2016) to account for global developments available at http://www.policyuncertainty.com/us_monthly.html.

  2. F

    CBOE Emerging Markets ETF Volatility Index

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE Emerging Markets ETF Volatility Index [Dataset]. https://fred.stlouisfed.org/series/VXEEMCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE Emerging Markets ETF Volatility Index (VXEEMCLS) from 2011-03-16 to 2025-07-21 about ETF, VIX, emerging markets, volatility, stock market, and USA.

  3. Top Tech Companies Stock Price

    • kaggle.com
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Mantero (2020). Top Tech Companies Stock Price [Dataset]. https://www.kaggle.com/datasets/tomasmantero/top-tech-companies-stock-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tomas Mantero
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.

    The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.

    You can read the definition of each sector here.

    The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.

    In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.

    To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.

    Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.

    Content

    In total there are 107 files in csv format. They are composed as follows:

    • 100 files contain the historical data of tech companies.
    • 5 files contain the historical data of the most used indices.
    • 1 file contain the list of all the companies in the S&P 500 index.
    • 1 file contain the list of all the companies in the technology sector.

    Column Description

    Every company and index file has the same structure with the same columns:

    Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.

    The two other files have different columns names:

    List of S&P 500 companies

    Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.

    Technology Sector Companies List

    Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.

    Acknowledgements

    SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...

  4. T

    Baltic Exchange Dry Index - Price Data

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Baltic Exchange Dry Index - Price Data [Dataset]. https://tradingeconomics.com/commodity/baltic
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 1985 - Jul 21, 2025
    Area covered
    World
    Description

    Baltic Dry fell to 2,016 Index Points on July 21, 2025, down 1.75% from the previous day. Over the past month, Baltic Dry's price has risen 20.43%, and is up 6.33% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Baltic Exchange Dry Index - values, historical data, forecasts and news - updated on July of 2025.

  5. m

    Data for: Nuclear hazard and asset prices: Implications of nuclear disasters...

    • data.mendeley.com
    Updated Nov 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ana Belén Alonso-Conde (2020). Data for: Nuclear hazard and asset prices: Implications of nuclear disasters in the cross-sectional behavior of stock returns [Dataset]. http://doi.org/10.17632/wv94fj59t4.3
    Explore at:
    Dataset updated
    Nov 16, 2020
    Authors
    Ana Belén Alonso-Conde
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    Using all stocks listed on the Japanese equity market and macroeconomic data for Japan, the dataset comprises the following series:

    1. Japan_25_Portfolios_MV_PTBV: Monthly returns for 25 size-book-to-market equity portfolios, following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    2. Japan_25_Portfolios_MV_PE: Monthly returns for 25 size-PE portfolios, following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    3. Japan_50_Portfolios_SECTOR: Monthly returns for 50 industry portfolios. (Raw data source: Datastream database)
    4. Japan_3 Factors: Fama and French three-factors (RM, SMB and HML), following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    5. Japan_5 Factors: Fama and French five-factors (RM, SMB, HML, RMW, and CMA), following the Fama and French (2015) methodology. (Raw data source: Datastream database)
    6. Japan_NUCLEAR_Y: Instrument in years with a value of 1 when a nuclear disaster has occurred somewhere in the world and 0 otherwise. (Raw data source: Bloomberg and BBC News)
    7. Japan_NUCLEAR_M: Instrument in months with a value of 1 when a nuclear disaster has occurred somewhere in the world and 0 otherwise. (Raw data source: Bloomberg and BBC News)
    8. Japan_RF_M: Three-month interest rate of the Treasury Bill for Japan. (Raw data source: OECD)
    9. Company data: Names and general data of the companies that constitute the sample. (Raw data source: Datastream database)
    10. Number of stocks in portfolios: Number of stocks included each year in Japan_25_Portfolios_MV_PTBV, Japan_25_Portfolios_MV_PE and Japan_50_Portfolios_SECTOR. (Raw data source: Datastream database)

    We have produced all return series using the following data from Datastream: (i) total return index (RI series), (ii) market value (MV series), (iii) market-to-book equity (PTBV series), (iv) total assets (WC02999 series), (v) return on equity (WC08301 series), (vi) price-to-earnings ratio (PE series), and (vii) industry (SECTOR series). We have used the generic rules suggested by Griffin, Kelly, & Nardari (2010) for excluding non-common equity securities from Datastream data. We also exclude stocks with less than twelve observations. Accordingly, our sample comprises a total number of 5,212 stocks.

    REFERENCES:

    Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56. Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, 1–22. Griffin, J. M., Kelly, P., and Nardari, F. (2010). Do market efficiency measures yield correct inferences? A comparison of developed and emerging markets. Review of Financial Studies, 23, 3225–3277.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye (2023). Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets [Dataset]. http://doi.org/10.25403/UPresearchdata.22187701.v1

Analysis of volatility spillovers in the stock, currency and goods market and the monetary policy efficiency within different uncertainty states in these markets

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
University of Pretoria
Authors
Chevaughn van der Westhuizen; Reneé van Eyden; Goodness C. Aye
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

South African monthly The FTSE/JSE All Share Index data was procured from Bloomberg and the nominal effective exchange rate (NEER) from South African Reserve Bank (SARB) database, where the data has been seasonally adjusted specifying 2015 as the base year. Volatility measures in these markets are generated through a multivaraite EGARCH model in the WinRATS software. South African monthly consumer price index (CPI) data was procured from the International Monetary Fund’s International Financial Statistics (IFS) database, where the data has been seasonally adjusted, specifying 2010 as the base year. The inflation rate is constructed by taking the year-on-year changes in the monthly CPI figures. Inflation uncertainty was generated through the GARCH model in Eviews software. The following South African macroeconomic variables were procured from the SARB: real industrial production (IP), which is used as a proxy for real GDP, real investment (I), real consumption (C), inflation (CPI), broad money (M3), the 3-month treasury bill rate (TB3) and the policy rate (R), a measure of U.S. EPU developed by Baker et al. (2016) to account for global developments available at http://www.policyuncertainty.com/us_monthly.html.

Search
Clear search
Close search
Google apps
Main menu