11 datasets found
  1. Quarterly Census of Employment and Wages (QCEW)

    • catalog.data.gov
    • data.ca.gov
    Updated Nov 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department (2025). Quarterly Census of Employment and Wages (QCEW) [Dataset]. https://catalog.data.gov/dataset/quarterly-census-of-employment-and-wages-qcew-a6fea
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Description

    The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels. Disclaimer: For information regarding future updates or preliminary/final data releases, please refer to the Bureau of Labor Statistics Release Calendar: https://www.bls.gov/cew/release-calendar.htm

  2. Data from: Occupational Employment Statistics

    • icpsr.umich.edu
    Updated Jun 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (2015). Occupational Employment Statistics [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/36219
    Explore at:
    Dataset updated
    Jun 26, 2015
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36219/terms

    Area covered
    Virgin Islands of the United States, Guam, United States, Puerto Rico
    Description

    The Occupational Employment Statistics (OES) program conducts a semiannual survey designed to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. The Bureau of Labor Statistics produces occupational employment and wage estimates for approximately 415 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and selected 5- and 6-digit North American Industry Classification System (NAICS) industrial groups. The OES program surveys approximately 200,000 establishments per panel (every six months), taking three years to fully collect the sample of 1.2 million establishments. To reduce respondent burden, the collection is on a three-year survey cycle that ensures that establishments are surveyed at most once every three years. The estimates for occupations in nonfarm establishments are based on OES data collected for the reference months of May and November. The OES survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OES survey make these estimates possible. The OES features several arts-related occupations, particularly in the Arts, Design, Entertainment, Sports, and Media Occupations group (Standard Occupational Classification (SOC) code 27-0000). Several featured occupation groups include the following: Art and Design Workers (SOC 27-1000) Art Directors Fine Artists, including Painters, Sculptors, and Illustrators Multimedia Artists and Animators Fashion Designers Graphic Designers Set and Exhibit Designers Entertainers and Performers, Sports and Related Workers (SOC 27-2000) Actors Producers and Directors Athletes Coaches and Scouts Dancers Choreographers Music Directors and Composers Musicians and Singers Media and Communication Workers (SOC 27-3000) Radio and Television Announcers Reports and Correspondents Public Relations Specialists Writers and Authors Data for years 1997 through the latest release and can be found on the OES Data page. Also, see OES News Releases sections for current estimates and news releases. Users can analyze the data for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. As well, OES Charts are available. Users may also explore data using OES Maps. If preferred, data can also be accessed via the Multi-Screen Data Search or Text Files using the OES Databases page.

  3. Data from: Quarterly Census of Employment and Wages

    • icpsr.umich.edu
    Updated Oct 22, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (2015). Quarterly Census of Employment and Wages [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/36312
    Explore at:
    Dataset updated
    Oct 22, 2015
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms

    Area covered
    United States
    Description

    The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex

  4. T

    Vital Signs: Jobs by Industry (Location Quotient) by County (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Jobs by Industry (Location Quotient) by County (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Jobs-by-Industry-Location-Quotient-by-/uijm-ykyx
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Dec 14, 2022
    Description

    VITAL SIGNS INDICATOR
    Jobs by Industry (EC1)

    FULL MEASURE NAME
    Employment by place of work by industry sector

    LAST UPDATED
    December 2022

    DESCRIPTION
    Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.

    DATA SOURCE
    Bureau of Labor Statistics, Quarterly Census of Employment and Wages (QCEW) - https://www.bls.gov/cew/downloadable-data-files.htm
    1990-2021

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Quarterly Census of Employment and Wages (QCEW) employment data is reported by the place of work and represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.

    Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.

    The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of California's employment in that same sector. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.

    Data is mainly pulled from aggregation level 73, which is county-level summarized at the North American Industry Classification System (NAICS) supersector level (12 sectors). This aggregation level exhibits the least loss due to data suppression, in the magnitude of 1-2 percent for regional employment, and is therefore preferred. However, the supersectors group together NAICS 11 Agriculture, Forestry, Fishing and Hunting; NAICS 21 Mining and NAICS 23 Construction. To provide a separate tally of Agriculture, Forestry, Fishing and Hunting, the aggregation level 74 data was used for NAICS codes 11, 21 and 23.

    QCEW reports on employment in Public Administration as NAICS 92. However, many government activities are reported with an industry specific code - such as transportation or utilities even if those may be public governmental entities. In 2021 for the Bay Area, the largest industry groupings under public ownership are Education and health services (58%); Public administration (29%) and Trade, transportation, and utilities (29%). With the exception of Education and health services, all other public activities were coded as government/public administration, regardless of industry group.

    For the county data there were some industries that reported 0 jobs or did not report jobs at the desired aggregation/NAICS level for the following counties/years:

    Farm:
    (aggregation level: 74, NAICS code: 11) - Contra Costa: 2008-2010 - Marin: 1990-2006, 2008-2010, 2014-2020 - Napa: 1990-2004, 2013-2021 - San Francisco: 2019-2020 - San Mateo: 2013

    Information:
    (aggregation level: 73, NAICS code: 51) - Solano: 2001

    Financial Activities:
    (aggregation level: 73, NAICS codes: 52, 53) - Solano: 2001

    Unclassified:
    (aggregation level: 73, NAICS code: 99) - All nine Bay Area counties: 1990-2000 - Marin, Napa, San Mateo, and Solano: 2020 - Napa: 2019 - Solano: 2001

  5. T

    Vital Signs: Jobs by Industry (Location Quotient) - Bay Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Jobs by Industry (Location Quotient) - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Jobs-by-Industry-Location-Quotient-Bay/bukt-gnzt
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 1, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Jobs by Industry (EC1)

    FULL MEASURE NAME
    Employment by place of work by industry sector

    LAST UPDATED
    December 2022

    DESCRIPTION
    Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.

    DATA SOURCE
    Bureau of Labor Statistics, Quarterly Census of Employment and Wages (QCEW) - https://www.bls.gov/cew/downloadable-data-files.htm
    1990-2021

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Quarterly Census of Employment and Wages (QCEW) employment data is reported by the place of work and represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.

    Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.

    The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of California's employment in that same sector. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.

    Data is mainly pulled from aggregation level 73, which is county-level summarized at the North American Industry Classification System (NAICS) supersector level (12 sectors). This aggregation level exhibits the least loss due to data suppression, in the magnitude of 1-2 percent for regional employment, and is therefore preferred. However, the supersectors group together NAICS 11 Agriculture, Forestry, Fishing and Hunting; NAICS 21 Mining and NAICS 23 Construction. To provide a separate tally of Agriculture, Forestry, Fishing and Hunting, the aggregation level 74 data was used for NAICS codes 11, 21 and 23.

    QCEW reports on employment in Public Administration as NAICS 92. However, many government activities are reported with an industry specific code - such as transportation or utilities even if those may be public governmental entities. In 2021 for the Bay Area, the largest industry groupings under public ownership are Education and health services (58%); Public administration (29%) and Trade, transportation, and utilities (29%). With the exception of Education and health services, all other public activities were coded as government/public administration, regardless of industry group.

    For the county data there were some industries that reported 0 jobs or did not report jobs at the desired aggregation/NAICS level for the following counties/years:

    Farm:
    (aggregation level: 74, NAICS code: 11) - Contra Costa: 2008-2010 - Marin: 1990-2006, 2008-2010, 2014-2020 - Napa: 1990-2004, 2013-2021 - San Francisco: 2019-2020 - San Mateo: 2013

    Information:
    (aggregation level: 73, NAICS code: 51) - Solano: 2001

    Financial Activities:
    (aggregation level: 73, NAICS codes: 52, 53) - Solano: 2001

    Unclassified:
    (aggregation level: 73, NAICS code: 99) - All nine Bay Area counties: 1990-2000 - Marin, Napa, San Mateo, and Solano: 2020 - Napa: 2019 - Solano: 2001

  6. Unemployment in America, Per US State

    • kaggle.com
    zip
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Data Wrangler (2023). Unemployment in America, Per US State [Dataset]. https://www.kaggle.com/justin2028/unemployment-in-america-per-us-state
    Explore at:
    zip(845332 bytes)Available download formats
    Dataset updated
    Mar 2, 2023
    Authors
    The Data Wrangler
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12064410%2Fe1c439d356d34481d8343cfcc5f32bb2%2Funemployment%20flag.png?generation=1677706474308274&alt=media" alt="">

    DAY ~17,000 (January 1976 to December 2022)

    This is a dataset that tracks relevant population statistics and employment rates per US state since 1976.

    All data are official figures from the Bureau of Labor Statistics that have been compiled and structured by myself. Besides the 50 US states, the unemployment data of three other areas are also being tracked in order to increase the analytical potential of the dataset: the District of Columbia, the Los Angeles-Long Beach-Glendale metropolitan division, and New York City.

    Why did I create this dataset? Employment continues to be a significant issue in America today and contributes to other predicaments such as the homelessness crisis. By uploading time-series data regarding American unemployment over the past four decades, I hope that the community is able to determine the various statistical trends offered. In my personal opinion, achieving a quantitative yet objective viewpoint of a subject such as unemployment is crucial to understanding the issues at hand.

    Data Sources

    The primary data source used was the Bureau of Labor Statistics's official website, which publishes employment data pertaining to America. Considering the meticulous documentation of federal statistics by such a accredited government agency, no other authority is more equipped to provide insight on US unemployment.
    1. The Bureau of Labor Statistics's Economic News Release on (Monthly) State Employment and Unemployment - The Bureau of Labor Statistics has published monthly updates on unemployment rates since January 1976.
    2. The Bureau of Labor Statistics's State Employment and Unemployment Technical Note - The Bureau of Labor Statistics released a detailed overview of their unemployment data, the methodology behind their data, and the proper definitions and terminologies for the variables tracked. The guide mainly provided essential contextual knowledge needed to create a meaningful dataset.

    Statistics Being Tracked

    • FIPS Code of State/Area
    • Year/Month of Statistic
    • Total Civilian Non-Institutional Population in State/Area
    • Total Civilian Labor Force in State/Area
    • Percent (%) of State/Area's Population
    • Total Employment in State/Area
    • Percent (%) of Labor Force Employed in State/Area
    • Total Unemployment in State/Area
    • Percent (%) of Labor Force Unemployed in State/Area

    Dataset History

    2023-03-01 - Dataset is created (17,227 days after temporal coverage start date).

    GitHub Repository - The same data but on GitHub.

    Code Starter

    Link to Notebook

  7. Microsoft Data Science Capstone

    • kaggle.com
    zip
    Updated Jul 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nandvard (2018). Microsoft Data Science Capstone [Dataset]. https://www.kaggle.com/nandvard/microsoft-data-science-capstone
    Explore at:
    zip(503762 bytes)Available download formats
    Dataset updated
    Jul 30, 2018
    Authors
    nandvard
    Description

    The goal is to predict the rate of heart disease (per 100,000 individuals) across the United States at the county-level from other socioeconomic indicators. The data is compiled from a wide range of sources and made publicly available by the United States Department of Agriculture Economic Research Service (USDA ERS).

    There are 33 variables in this dataset. Each row in the dataset represents a United States county, and the dataset we are working with covers two particular years, denoted a, and b We don't provide a unique identifier for an individual county, just a row_id for each row.

    The variables in the dataset have names that of the form category_variable, where category is the high level category of the variable (e.g. econ or health). variable is what the specific column contains.

    We're trying to predict the variable heart_disease_mortality_per_100k (a positive integer) for each row of the test data set.

    Columns

    area — information about the county

    area_rucc — Rural-Urban Continuum Codes "form a classification scheme that distinguishes metropolitan counties by the population size of their metro area, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area. The official Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into three metro and six nonmetro categories. Each county in the U.S. is assigned one of the 9 codes." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/)

    area_urban_influence — Urban Influence Codes "form a classification scheme that distinguishes metropolitan counties by population size of their metro area, and nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan areas." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/urban-influence-codes/)

    econ — economic indicators

    econ_economic_typology — County Typology Codes "classify all U.S. counties according to six mutually exclusive categories of economic dependence and six overlapping categories of policy-relevant themes. The economic dependence types include farming, mining, manufacturing, Federal/State government, recreation, and nonspecialized counties. The policy-relevant types include low education, low employment, persistent poverty, persistent child poverty, population loss, and retirement destination." (USDA Economic Research Service, https://www.ers.usda.gov/data-products/county-typology-codes.aspx)

    econ_pct_civilian_labor — Civilian labor force, annual average, as percent of population (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    econ_pct_unemployment — Unemployment, annual average, as percent of population (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    econ_pct_uninsured_adults — Percent of adults without health insurance (Bureau of Labor Statistics, http://www.bls.gov/lau/) econ_pct_uninsured_children — Percent of children without health insurance (Bureau of Labor Statistics, http://www.bls.gov/lau/)

    health — health indicators

    health_pct_adult_obesity — Percent of adults who meet clinical definition of obese (National Center for Chronic Disease Prevention and Health Promotion)

    health_pct_adult_smoking — Percent of adults who smoke (Behavioral Risk Factor Surveillance System)

    health_pct_diabetes — Percent of population with diabetes (National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation)

    health_pct_low_birthweight — Percent of babies born with low birth weight (National Center for Health Statistics)

    health_pct_excessive_drinking — Percent of adult population that engages in excessive consumption of alcohol (Behavioral Risk Factor Surveillance System, )

    health_pct_physical_inacticity — Percent of adult population that is physically inactive (National Center for Chronic Disease Prevention and Health Promotion)

    health_air_pollution_particulate_matter — Fine particulate matter in µg/m³ (CDC WONDER, https://wonder.cdc.gov/wonder/help/pm.html)

    health_homicides_per_100k — Deaths by homicide per 100,000 population (National Center for Health Statistics)

    health_motor_vehicle_crash_deaths_per_100k — Deaths by motor vehicle crash per 100,000 population (National Center for Health Statistics)

    health_pop_per_dentist — Population per dentist (HRSA Area Resource File)

    health_pop_per_primary_care_physician — Population per Primary Care Physician (HRSA Area Resource File)

    demo — demographics information

    demo_pct_female — Percent of population that is female (US Census Population Estimates)

    demo_pct_below_18_years_of_age — Percent of population that is below 18 years of age (US Census Population Estimates)

    demo_pct_aged_65_years_and_older — Percent of population that is aged 65 years or older (US Census Population Estimates)

    dem...

  8. d

    Replication data for: Job-to-Job Mobility and Inflation

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faccini, Renato; Melosi, Leonardo (2023). Replication data for: Job-to-Job Mobility and Inflation [Dataset]. http://doi.org/10.7910/DVN/SMQFGS
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Faccini, Renato; Melosi, Leonardo
    Description

    Replication files for "Job-to-Job Mobility and Inflation" Authors: Renato Faccini and Leonardo Melosi Review of Economics and Statistics Date: February 2, 2023 -------------------------------------------------------------------------------------------- ORDERS OF TOPICS .Section 1. We explain the code to replicate all the figures in the paper (except Figure 6) .Section 2. We explain how Figure 6 is constructed .Section 3. We explain how the data are constructed SECTION 1 Replication_Main.m is used to reproduce all the figures of the paper except Figure 6. All the primitive variables are defined in the code and all the steps are commented in code to facilitate the replication of our results. Replication_Main.m, should be run in Matlab. The authors tested it on a DELL XPS 15 7590 laptop wih the follwoing characteristics: -------------------------------------------------------------------------------------------- Processor Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz 2.40 GHz Installed RAM 64.0 GB System type 64-bit operating system, x64-based processor -------------------------------------------------------------------------------------------- It took 2 minutes and 57 seconds for this machine to construct Figures 1, 2, 3, 4a, 4b, 5, 7a, and 7b. The following version of Matlab and Matlab toolboxes has been used for the test: -------------------------------------------------------------------------------------------- MATLAB Version: 9.7.0.1190202 (R2019b) MATLAB License Number: 363305 Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 19045) Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode -------------------------------------------------------------------------------------------- MATLAB Version 9.7 (R2019b) Financial Toolbox Version 5.14 (R2019b) Optimization Toolbox Version 8.4 (R2019b) Statistics and Machine Learning Toolbox Version 11.6 (R2019b) Symbolic Math Toolbox Version 8.4 (R2019b) -------------------------------------------------------------------------------------------- The replication code uses auxiliary files and save the pictures in various subfolders: \JL_models: It contains the equations describing the model including the observation equations and routine used to solve the model. To do so, the routine in this folder calls other routines located in some fo the subfolders below. \gensystoama: It contains a set of codes that allow us to solve linear rational expectations models. We use the AMA solver. More information are provided in the file AMASOLVE.m. The codes in this subfolder have been developed by Alejandro Justiniano. \filters: it contains the Kalman filter augmented with a routine to make sure that the zero lower bound constraint for the nominal interest rate is satisfied in every period in our sample. \SteadyStateSolver: It contains a set of routines that are used to solved the steady state of the model numerically. \NLEquations: It contains some of the equations of the model that are log-linearized using the symbolic toolbox of matlab. \NberDates: It contains a set of routines that allows to add shaded area to graphs to denote NBER recessions. \Graphics: It contains useful codes enabling features to construct some of the graphs in the paper. \Data: it contains the data set used in the paper. \Params: It contains a spreadsheet with the values attributes to the model parameters. \VAR_Estimation: It contains the forecasts implied by the Bayesian VAR model of Section 2. The output of Replication_Main.m are the figures of the paper that are stored in the subfolder \Figures SECTION 2 The Excel file "Figure-6.xlsx" is used to create the charts in Figure 6. All three panels of the charts (A, B, and C) plot a measure of unexpected wage inflation against the unemployment rate, then fits separate linear regressions for the periods 1960-1985,1986-2007, and 2008-2009. Unexpected wage inflation is given by the difference between wage growth and a measure of expected wage growth. In all three panels, the unemployment rate used is the civilian unemployment rate (UNRATE), seasonally adjusted, from the BLS. The sheet "Panel A" uses quarterly manufacturing sector average hourly earnings growth data, seasonally adjusted (CES3000000008), from the Bureau of Labor Statistics (BLS) Employment Situation report as the measure of wage inflation. The unexpected wage inflation is given by the difference between earnings growth at time t and the average of earnings growth across the previous four months. Growth rates are annualized quarterly values. The sheet "Panel B" uses quarterly Nonfarm Business Sector Compensation Per Hour, seasonally adjusted (COMPNFB), from the BLS Productivity and Costs report as its measure of wage inflation. As in Panel A, expected wage inflation is given by the... Visit https://dataone.org/datasets/sha256%3A44c88fe82380bfff217866cac93f85483766eb9364f66cfa03f1ebdaa0408335 for complete metadata about this dataset.

  9. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  10. Vital Signs: Home Prices – by metro

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Sep 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-metro/7ksc-i6kn
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Sep 24, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  11. T

    Vital Signs: Home Prices - Bay Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-Bay-Area-2022-/2uf4-6aym
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 26, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Employment Development Department (2025). Quarterly Census of Employment and Wages (QCEW) [Dataset]. https://catalog.data.gov/dataset/quarterly-census-of-employment-and-wages-qcew-a6fea
Organization logo

Quarterly Census of Employment and Wages (QCEW)

Explore at:
Dataset updated
Nov 23, 2025
Dataset provided by
Employment Development Departmenthttp://www.edd.ca.gov/
Description

The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels. Disclaimer: For information regarding future updates or preliminary/final data releases, please refer to the Bureau of Labor Statistics Release Calendar: https://www.bls.gov/cew/release-calendar.htm

Search
Clear search
Close search
Google apps
Main menu