100+ datasets found
  1. Occupational Employment and Wage Statistics (OES)

    • catalog.data.gov
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Occupational Employment and Wage Statistics (OES) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oes
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes

  2. Occupational Outlook Handbook

    • catalog.data.gov
    • gimi9.com
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Occupational Outlook Handbook [Dataset]. https://catalog.data.gov/dataset/occupational-outlook-handbook-51009
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Occupational Outlook Handbook (OOH) is a nationally recognized source of career information, designed to provide valuable assistance to individuals making decisions about their future work lives. The Handbook is revised every two years. The OOH offers information on the hundreds of occupations that provide the majority of jobs in the United States. Each occupational profile describes the typical duties performed by the occupation, the work environment of that occupation, the typical education and training needed to enter the occupation, the median pay for workers in the occupation, and the job outlook over the coming decade for that occupation. For information on occupations, please visit: https://www.bls.gov/ooh/

  3. Occupational Employment and Wage Statistics (OEWS)

    • data.ca.gov
    csv
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department (2025). Occupational Employment and Wage Statistics (OEWS) [Dataset]. https://data.ca.gov/dataset/oews
    Explore at:
    csv(105364359)Available download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Authors
    California Employment Development Department
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Occupational Employment and Wage Statistics (OEWS) Survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). The BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OEWS survey make these estimates possible.

    The OEWS survey collects data from a sample of establishments and calculates employment and wage estimates by occupation, industry, and geographic area. The semiannual survey covers all non-farm industries. Data are collected by the Employment Development Department in cooperation with the Bureau of Labor Statistics, US Department of Labor. The OEWS Program estimates employment and wages for approximately 830 occupations. It also produces employment and wage estimates for statewide, Metropolitan Statistical Areas (MSAs), and Balance of State areas. Estimates are a snapshot in time and should not be used as a time series.

    The OEWS estimates are published annually.

    SOURCE: https://www.bls.gov/oes/oes_emp.htm

  4. F

    Employed full time: Wage and salary workers: Database administrators...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Database administrators occupations: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LEU0254477400A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Database administrators occupations: 16 years and over (LEU0254477400A) from 2000 to 2024 about administrative, occupation, full-time, salaries, workers, 16 years +, wages, employment, and USA.

  5. USA Bureau of Labor Statistics

    • kaggle.com
    zip
    Updated Aug 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Labor Statistics (2019). USA Bureau of Labor Statistics [Dataset]. https://www.kaggle.com/bls/bls
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Aug 30, 2019
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Authors
    US Bureau of Labor Statistics
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Bureau of Labor Statistics (BLS) is a unit of the United States Department of Labor. It is the principal fact-finding agency for the U.S. government in the broad field of labor economics and statistics and serves as a principal agency of the U.S. Federal Statistical System. The BLS is a governmental statistical agency that collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor representatives. Source: https://en.wikipedia.org/wiki/Bureau_of_Labor_Statistics

    Content

    Bureau of Labor Statistics including CPI (inflation), employment, unemployment, and wage data.

    Update Frequency: Monthly

    Querying BigQuery Tables

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:bls

    https://cloud.google.com/bigquery/public-data/bureau-of-labor-statistics

    Dataset Source: http://www.bls.gov/data/

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by Clark Young from Unsplash.

    Inspiration

    What is the average annual inflation across all US Cities? What was the monthly unemployment rate (U3) in 2016? What are the top 10 hourly-waged types of work in Pittsburgh, PA for 2016?

  6. F

    Unemployment Level - Information Industry, Private Wage and Salary Workers

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Unemployment Level - Information Industry, Private Wage and Salary Workers [Dataset]. https://fred.stlouisfed.org/series/LNU03032237
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Unemployment Level - Information Industry, Private Wage and Salary Workers (LNU03032237) from Jan 2000 to Jun 2025 about information, salaries, workers, private industries, 16 years +, wages, household survey, private, unemployment, industry, and USA.

  7. F

    Employment Cost Index: Wages and Salaries: State and Local Government: All...

    • fred.stlouisfed.org
    json
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Cost Index: Wages and Salaries: State and Local Government: All Workers [Dataset]. https://fred.stlouisfed.org/graph/?id=ECIGVTWAG
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Cost Index: Wages and Salaries: State and Local Government: All Workers from Q1 2001 to Q1 2025 about state & local, ECI, salaries, workers, wages, government, inflation, and USA.

  8. Current Employment Statistics - Employment, Hours, and Earnings - State and...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Current Employment Statistics - Employment, Hours, and Earnings - State and Metro Area [Dataset]. https://catalog.data.gov/dataset/current-employment-statistics-employment-hours-and-earnings-state-and-metro-area-b02b3
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Current Employment Statistics (CES) program produces detailed industry estimates of employment, hours, and earnings of workers on nonfarm payrolls. CES State and Metro Area produces data for all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, and about 450 metropolitan areas and divisions. Each month, CES surveys approximately 142,000 businesses and government agencies, representing 689,000 individual worksites. For more information and data, visit: https://www.bls.gov/sae/

  9. Occupation, Salary and Likelihood of Automation

    • kaggle.com
    Updated May 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Occupation, Salary and Likelihood of Automation [Dataset]. https://www.kaggle.com/andrewmvd/occupation-salary-and-likelihood-of-automation/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Larxel
    Description

    About this Dataset

    This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.

    How to Cite this Dataset

    If you use this dataset in your research, please credit the authors.

    Salary Data

    @misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}

    Automation Data

    @article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}

    License

    License was not specified at the source.

    Splash Banner

    Photo by Alex Knight on Unsplash

  10. d

    Quarterly Census Employment and Wage - Series.

    • datadiscoverystudio.org
    • data.amerigeoss.org
    • +1more
    Updated Jun 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Quarterly Census Employment and Wage - Series. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/11219ba1744b4ccf8d2b3e3b2878b398/html
    Explore at:
    Dataset updated
    Jun 1, 2017
    Description

    description: The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of employment and wages reported by employers covering 98 percent of U.S. jobs, available at the county, MSA, state and national levels by industry. More information and details about the data provided can be found at http://www.bls.gov/cew; abstract: The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of employment and wages reported by employers covering 98 percent of U.S. jobs, available at the county, MSA, state and national levels by industry. More information and details about the data provided can be found at http://www.bls.gov/cew

  11. National Compensation Survey - Modeled Wage Estimates

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). National Compensation Survey - Modeled Wage Estimates [Dataset]. https://catalog.data.gov/dataset/national-compensation-survey-modeled-wage-estimates-5de7e
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The National Compensation Survey (NCS) program produces information on wages by occupation for many metropolitan areas.The Modeled Wage Estimates (MWE) provide annual estimates of average hourly wages for occupations by selected job characteristics and within geographical location. The job characteristics include bargaining status (union and nonunion), part- and full-time work status, incentive- and time-based pay, and work levels by occupation. The modeled wage estimates are produced using a statistical procedure that combines survey data collected by the National Compensation Survey (NCS) and the Occupational Employment Statistics (OES) programs. Borrowing from the strengths of the NCS, information on job characteristics and work levels, and from the OES, the occupational and geographic detail, the modeled wage estimates provide more detail on occupational average hourly wages than either program is able to provide separately. Wage rates for different work levels within occupation groups also are published. Data are available for private industry, State and local governments, full-time workers, part-time workers, and other workforce characteristics.

  12. Quarterly Census of Employment and Wages (QCEW)

    • catalog.data.gov
    • data.ca.gov
    • +1more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department (2024). Quarterly Census of Employment and Wages (QCEW) [Dataset]. https://catalog.data.gov/dataset/quarterly-census-of-employment-and-wages-qcew-a6fea
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Description

    The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.

  13. F

    Employed full time: Wage and salary workers: Information and record clerks,...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Information and record clerks, all other occupations: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LEU0254501600A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Information and record clerks, all other occupations: 16 years and over (LEU0254501600A) from 2000 to 2024 about recording, clerical workers, occupation, information, full-time, salaries, workers, 16 years +, wages, employment, and USA.

  14. T

    Vital Signs: Jobs by Industry (Location Quotient) – by county

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Jul 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Industry (Location Quotient) – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Industry-Location-Quotient-by-/tf93-mdd4
    Explore at:
    tsv, csv, xml, application/rssxml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Jul 11, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Industry (EC1)

    FULL MEASURE NAME Employment by place of work by industry sector

    LAST UPDATED July 2019

    DESCRIPTION Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.

    DATA SOURCE Bureau of Labor Statistics: Current Employment Statistics 1990-2017 http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012).

    The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections.

    The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.

  15. Employer Cost for Employee Compensation

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Employer Cost for Employee Compensation [Dataset]. https://catalog.data.gov/dataset/employer-cost-for-employee-compensation-e7a39
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Employer Costs for Employee Compensation (ECEC) is a measure of the cost of labor. The compensation series includes wages and salaries plus employer costs for individual employee benefits. Employee benefit costs are calculated as cents-per-hour-worked for individual benefits ranging from employer payments for Social Security to paid time off for holidays. The survey covers all occupations in the civilian economy, which includes the total private economy (excluding farms and households), and the public sector (excluding the Federal government). Statistics are published for the private and public sectors separately, and the data are combined in a measure for the civilian economy. For information and data, visit: https://www.bls.gov/ncs/ect/

  16. M

    Wage and Salary Workers - College Graduates (2002-2023)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Wage and Salary Workers - College Graduates (2002-2023) [Dataset]. https://www.macrotrends.net/5640/wage-and-salary-workers-college-graduates
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2002 - 2023
    Area covered
    United States
    Description

    Wage and salary workers are workers age 16 and older who receive wages, salaries, commissions, tips, payments in kind, or piece rates on their sole or principal job. This group includes employees in both the private and public sectors. Workers paid by the hour are employed wage and salary workers who report that they are paid at an hourly rate on their job. Estimates of workers paid by the hour include both full-time and part-time workers unless otherwise specified. All self-employed workers are excluded whether or not their businesses are incorporated.

    The estimates of workers paid at or below the federal minimum wage are based solely on the hourly wage they report (which does not include overtime pay, tips, or commissions). Salaried workers and other nonhourly paid workers are also excluded. It should be noted that some respondents might round hourly earnings when answering survey questions. As a result, some workers might be reported as having hourly earnings above or below the federal minimum wage when, in fact, they earn the minimum wage. For more information see https://www.bls.gov/cps/earnings.htm#minwage

  17. Wage Estimates

    • kaggle.com
    zip
    Updated Jun 29, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Labor Statistics (2017). Wage Estimates [Dataset]. https://www.kaggle.com/bls/wage-estimates
    Explore at:
    zip(4529907 bytes)Available download formats
    Dataset updated
    Jun 29, 2017
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Authors
    US Bureau of Labor Statistics
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context:

    The Occupational Employment Statistics (OES) and National Compensation Survey (NCS) programs have produced estimates by borrowing from the strength and breadth of each survey to provide more details on occupational wages than either program provides individually. Modeled wage estimates provide annual estimates of average hourly wages for occupations by selected job characteristics and within geographical location. The job characteristics include bargaining status (union and nonunion), part- and full-time work status, incentive- and time-based pay, and work levels by occupation.

    Direct estimates are based on survey responses only from the particular geographic area to which the estimate refers. In contrast, modeled wage estimates use survey responses from larger areas to fill in information for smaller areas where the sample size is not sufficient to produce direct estimates. Modeled wage estimates require the assumption that the patterns to responses in the larger area hold in the smaller area.

    The sample size for the NCS is not large enough to produce direct estimates by area, occupation, and job characteristic for all of the areas for which the OES publishes estimates by area and occupation. The NCS sample consists of 6 private industry panels with approximately 3,300 establishments sampled per panel, and 1,600 sampled state and local government units. The OES full six-panel sample consists of nearly 1.2 million establishments.

    The sample establishments are classified in industry categories based on the North American Industry Classification System (NAICS). Within an establishment, specific job categories are selected to represent broader occupational definitions. Jobs are classified according to the Standard Occupational Classification (SOC) system.

    Content:

    Summary: Average hourly wage estimates for civilian workers in occupations by job characteristic and work levels. These data are available at the national, state, metropolitan, and nonmetropolitan area levels.

    Frequency of Observations: Data are available on an annual basis, typically in May.

    Data Characteristics: All hourly wages are published to the nearest cent.

    Acknowledgements:

    This dataset was taken directly from the Bureau of Labor Statistics and converted to CSV format.

    Inspiration:

    This dataset contains the estimated wages of civilian workers in the United States. Wage changes in certain industries may be indicators for growth or decline. Which industries have had the greatest increases in wages? Combine this dataset with the Bureau of Labor Statistics Consumer Price Index dataset and find out what kinds of jobs you would need to afford your snacks and instant coffee!

  18. State

    • covid-hub.gio.georgia.gov
    • indianamap.org
    • +12more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://covid-hub.gio.georgia.gov/datasets/esri::state-67
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 2nd, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  19. M

    Median Weekly Real Earnings - Black Workers (2000-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Median Weekly Real Earnings - Black Workers (2000-2025) [Dataset]. https://www.macrotrends.net/4079/median-weekly-real-earnings-black-workers
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2025
    Area covered
    United States
    Description

    Data measure usual weekly earnings of wage and salary workers. Wage and salary workers are workers who receive wages, salaries, commissions, tips, payment in kind, or piece rates. The group includes employees in both the private and public sectors but, for the purposes of the earnings series, it excludes all self-employed persons, both those with incorporated businesses and those with unincorporated businesses. Usual weekly earnings represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received (at the main job in the case of multiple jobholders). Prior to 1994, respondents were asked how much they usually earned per week. Since January 1994, respondents have been asked to identify the easiest way for them to report earnings (hourly, weekly, biweekly, twice monthly, monthly, annually, or other) and how much they usually earn in the reported time period. Earnings reported on a basis other than weekly are converted to a weekly equivalent. The term "usual" is determined by each respondent's own understanding of the term. If the respondent asks for a definition of "usual," interviewers are instructed to define the term as more than half the weeks worked during the past 4 or 5 months. For more information see https://www.bls.gov/cps/earnings.htm

    The series comes from the 'Current Population Survey (Household Survey)'

    The source code is: LEU0252884600

  20. Country

    • giscommons-countyplanning.opendata.arcgis.com
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Country [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/esri::country-11
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 2nd, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bureau of Labor Statistics (2022). Occupational Employment and Wage Statistics (OES) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oes
Organization logo

Occupational Employment and Wage Statistics (OES)

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 16, 2022
Dataset provided by
Bureau of Labor Statisticshttp://www.bls.gov/
Description

The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes

Search
Clear search
Close search
Google apps
Main menu