100+ datasets found
  1. Occupational Employment and Wage Statistics (OES)

    • catalog.data.gov
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Occupational Employment and Wage Statistics (OES) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oes
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes

  2. F

    Average Hourly Earnings of All Employees, Total Private

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Hourly Earnings of All Employees, Total Private [Dataset]. https://fred.stlouisfed.org/series/CEU0500000003
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CEU0500000003) from Mar 2006 to Jun 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.

  3. Occupation, Salary and Likelihood of Automation

    • kaggle.com
    Updated May 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Occupation, Salary and Likelihood of Automation [Dataset]. https://www.kaggle.com/andrewmvd/occupation-salary-and-likelihood-of-automation/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Larxel
    Description

    About this Dataset

    This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.

    How to Cite this Dataset

    If you use this dataset in your research, please credit the authors.

    Salary Data

    @misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}

    Automation Data

    @article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}

    License

    License was not specified at the source.

    Splash Banner

    Photo by Alex Knight on Unsplash

  4. F

    Employed: Paid at prevailing federal minimum wage: Government wage and...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed: Paid at prevailing federal minimum wage: Government wage and salary workers: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LEU0204926300A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed: Paid at prevailing federal minimum wage: Government wage and salary workers: 16 years and over (LEU0204926300A) from 2000 to 2024 about paid, minimum wage, salaries, workers, 16 years +, federal, wages, government, employment, and USA.

  5. M

    U.S. Average Hourly Earnings - Private Sector (2006-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). U.S. Average Hourly Earnings - Private Sector (2006-2025) [Dataset]. https://www.macrotrends.net/3044/us-average-hourly-earnings-private-sector
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2006 - 2025
    Area covered
    United States
    Description

    The series comes from the 'Current Employment Statistics (Establishment Survey).' The source code is: CES0500000003

    The Average Hourly Earnings of All Private Employees is a measure of the average hourly earnings of all private employees on a “gross” basis, including premium pay for overtime and late-shift work. These differ from wage rates in that average hourly earnings measure the actual return to a worker for a set period of time, rather than the amount contracted for a unit of work, the wage rate. This measure excludes benefits, irregular bonuses, retroactive pay, and payroll taxes paid by the employer.

    Average Hourly Earnings are collected in the Current Employment Statistics (CES) program and published by the BLS. It is provided on a monthly basis, so this data is used in part by macroeconomists as an initial economic indicator of current trends. Progressions in earnings specifically help policy makers understand some of the pressures driving inflation.

    It is important to note that this series measures the average hourly earnings of the pool of workers in each period. Thus, changes in average hourly earnings can be due to either changes in the set of workers observed in a given period, or due to changes in earnings. For instance, in recessions that lead to the disproportionate increase of unemployment in lower-wage jobs, average hourly earnings can increase due to changes in the pool of workers rather than due to the widespread increase of hourly earnings at the worker-level.

    For more information, see: U.S. Bureau of Labor Statistics, CES Overview (https://www.bls.gov/web/empsit/cesprog.htm) U.S. Bureau of Labor Statistics, BLS Handbook of Methods: Chapter 2. Employment, Hours, and Earnings from the Establishment Survey (https://www.bls.gov/opub/hom/pdf/ces-20110307.pdf)

  6. Employment, Hours, and Earnings - National

    • db.nomics.world
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2025). Employment, Hours, and Earnings - National [Dataset]. https://db.nomics.world/BLS/ce
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Authors
    DBnomics
    Description

    The Current Employment Statistics (CES) program provides estimates of employment, hours, and earnings information on a national basis and in considerable industry detail. The Bureau of Labor Statistics collects payroll data each month from a sample of business and government establishments in all nonfarm activities.

  7. Current Population Survey (CPS) - Weekly and Hourly Earnings

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Labor Bureau of Labor Statistics (2022). Current Population Survey (CPS) - Weekly and Hourly Earnings [Dataset]. https://catalog.data.gov/dataset/current-population-survey-cps-weekly-and-hourly-earnings-8d283
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    United States Department of Laborhttp://www.dol.gov/
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Current Population Survey (CPS) is a monthly survey of households conducted by the Bureau of Census for the Bureau of Labor Statistics. The earnings data are collected from one-fourth of the CPS total sample of approximately 60,000 households. Data measures usual hourly and weekly earnings of wage and salary workers. All self-employed persons are excluded, regardless of whether their businesses are incorporated. Data represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received. Earnings data are available for all workers, by age, race, Hispanic or Latino ethnicity, sex, occupation, usual full- or part-time status, educational attainment, and other characteristics. Data are published quarterly. More information and details about the data provided can be found at http://www.bls.gov/cps/earnings.htm

  8. M

    Median Weekly Real Earnings - Black Workers (2000-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Median Weekly Real Earnings - Black Workers (2000-2025) [Dataset]. https://www.macrotrends.net/4079/median-weekly-real-earnings-black-workers
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2025
    Area covered
    United States
    Description

    Data measure usual weekly earnings of wage and salary workers. Wage and salary workers are workers who receive wages, salaries, commissions, tips, payment in kind, or piece rates. The group includes employees in both the private and public sectors but, for the purposes of the earnings series, it excludes all self-employed persons, both those with incorporated businesses and those with unincorporated businesses. Usual weekly earnings represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received (at the main job in the case of multiple jobholders). Prior to 1994, respondents were asked how much they usually earned per week. Since January 1994, respondents have been asked to identify the easiest way for them to report earnings (hourly, weekly, biweekly, twice monthly, monthly, annually, or other) and how much they usually earn in the reported time period. Earnings reported on a basis other than weekly are converted to a weekly equivalent. The term "usual" is determined by each respondent's own understanding of the term. If the respondent asks for a definition of "usual," interviewers are instructed to define the term as more than half the weeks worked during the past 4 or 5 months. For more information see https://www.bls.gov/cps/earnings.htm

    The series comes from the 'Current Population Survey (Household Survey)'

    The source code is: LEU0252884600

  9. M

    Wage and Salary Workers - College Graduates (2002-2023)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Wage and Salary Workers - College Graduates (2002-2023) [Dataset]. https://www.macrotrends.net/5640/wage-and-salary-workers-college-graduates
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2002 - 2023
    Area covered
    United States
    Description

    Wage and salary workers are workers age 16 and older who receive wages, salaries, commissions, tips, payments in kind, or piece rates on their sole or principal job. This group includes employees in both the private and public sectors. Workers paid by the hour are employed wage and salary workers who report that they are paid at an hourly rate on their job. Estimates of workers paid by the hour include both full-time and part-time workers unless otherwise specified. All self-employed workers are excluded whether or not their businesses are incorporated.

    The estimates of workers paid at or below the federal minimum wage are based solely on the hourly wage they report (which does not include overtime pay, tips, or commissions). Salaried workers and other nonhourly paid workers are also excluded. It should be noted that some respondents might round hourly earnings when answering survey questions. As a result, some workers might be reported as having hourly earnings above or below the federal minimum wage when, in fact, they earn the minimum wage. For more information see https://www.bls.gov/cps/earnings.htm#minwage

  10. M

    Full-Time Workers - Employment (1979-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Full-Time Workers - Employment (1979-2025) [Dataset]. https://www.macrotrends.net/5695/full-time-workers-employment
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1979 - 2025
    Area covered
    United States
    Description

    Wage and salary workers are workers who receive wages, salaries, commissions, tips, payment in kind, or piece rates. The group includes employees in both the private and public sectors but, for the purposes of the earnings series, it excludes all self-employed persons, both those with incorporated businesses and those with unincorporated businesses. For more information see https://www.bls.gov/cps/earnings.htm

    The series comes from the 'Current Population Survey (Household Survey)'

    The source code is: LES1254466800

  11. F

    Employment Level - Nonagriculture, Government Wage and Salary Workers

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Level - Nonagriculture, Government Wage and Salary Workers [Dataset]. https://fred.stlouisfed.org/series/LNU02032188
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Level - Nonagriculture, Government Wage and Salary Workers (LNU02032188) from Jan 1948 to Jun 2025 about nonagriculture, salaries, workers, 16 years +, wages, household survey, government, employment, and USA.

  12. A

    Current Employment Statistics - Employment, Hours, and Earnings - State and...

    • data.amerigeoss.org
    • catalog.data.gov
    html
    Updated Aug 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Current Employment Statistics - Employment, Hours, and Earnings - State and Metro Area [Dataset]. https://data.amerigeoss.org/es/dataset/current-employment-statistics-employment-hours-and-earnings-state-and-metro-area-b02b3
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 25, 2022
    Dataset provided by
    United States
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Current Employment Statistics (CES) program produces detailed industry estimates of employment, hours, and earnings of workers on nonfarm payrolls. CES State and Metro Area produces data for all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, and about 450 metropolitan areas and divisions. Each month, CES surveys approximately 142,000 businesses and government agencies, representing 689,000 individual worksites.

    For more information and data, visit: https://www.bls.gov/sae/

  13. F

    Employed: Workers paid hourly rates: Government wage and salary workers: 16...

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Employed: Workers paid hourly rates: Government wage and salary workers: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LEU0204926100A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2021
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed: Workers paid hourly rates: Government wage and salary workers: 16 years and over (LEU0204926100A) from 2000 to 2020 about paid, salaries, workers, hours, wages, 16 years +, government, employment, rate, and USA.

  14. M

    Men 16-24 - Median Real Weekly Earnings (2000-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Men 16-24 - Median Real Weekly Earnings (2000-2025) [Dataset]. https://www.macrotrends.net/5696/men-16-24-median-real-weekly-earnings
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2025
    Area covered
    United States
    Description

    Data measure usual weekly earnings of wage and salary workers. Wage and salary workers are workers who receive wages, salaries, commissions, tips, payment in kind, or piece rates. The group includes employees in both the private and public sectors but, for the purposes of the earnings series, it excludes all self-employed persons, both those with incorporated businesses and those with unincorporated businesses. Usual weekly earnings represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received (at the main job in the case of multiple jobholders). Prior to 1994, respondents were asked how much they usually earned per week. Since January 1994, respondents have been asked to identify the easiest way for them to report earnings (hourly, weekly, biweekly, twice monthly, monthly, annually, or other) and how much they usually earn in the reported time period. Earnings reported on a basis other than weekly are converted to a weekly equivalent. The term "usual" is determined by each respondent's own understanding of the term. If the respondent asks for a definition of "usual," interviewers are instructed to define the term as more than half the weeks worked during the past 4 or 5 months. For more information see https://www.bls.gov/cps/earnings.htm

    The series comes from the 'Current Population Survey (Household Survey)'

    The source code is: LEU0252882200

  15. F

    Employed full time: Wage and salary workers: Eligibility interviewers,...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Eligibility interviewers, government programs occupations: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LEU0254500500A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Eligibility interviewers, government programs occupations: 16 years and over (LEU0254500500A) from 2000 to 2024 about occupation, full-time, salaries, workers, 16 years +, wages, government, employment, and USA.

  16. Weekly & Hourly Earnings

    • db.nomics.world
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DBnomics (2025). Weekly & Hourly Earnings [Dataset]. https://db.nomics.world/BLS/le
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Authors
    DBnomics
    Description

    The Current Population Survey (CPS) is a sample survey of the population 16 years of age and over. The survey is conducted each month by the U.S. Census Bureau for the Bureau of Labor Statistics and provides comprehensive data on the labor force, the employed, and the unemployed, classified by such characteristics as age, sex, race, family relationship, marital status, occupation, and industry attachment

  17. T

    Vital Signs: Jobs by Industry (Location Quotient) by County (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Dec 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Jobs by Industry (Location Quotient) by County (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Jobs-by-Industry-Location-Quotient-by-/uijm-ykyx
    Explore at:
    json, tsv, xml, csv, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Dec 14, 2022
    Description

    VITAL SIGNS INDICATOR
    Jobs by Industry (EC1)

    FULL MEASURE NAME
    Employment by place of work by industry sector

    LAST UPDATED
    December 2022

    DESCRIPTION
    Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.

    DATA SOURCE
    Bureau of Labor Statistics, Quarterly Census of Employment and Wages (QCEW) - https://www.bls.gov/cew/downloadable-data-files.htm
    1990-2021

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Quarterly Census of Employment and Wages (QCEW) employment data is reported by the place of work and represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.

    Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.

    The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of California's employment in that same sector. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.

    Data is mainly pulled from aggregation level 73, which is county-level summarized at the North American Industry Classification System (NAICS) supersector level (12 sectors). This aggregation level exhibits the least loss due to data suppression, in the magnitude of 1-2 percent for regional employment, and is therefore preferred. However, the supersectors group together NAICS 11 Agriculture, Forestry, Fishing and Hunting; NAICS 21 Mining and NAICS 23 Construction. To provide a separate tally of Agriculture, Forestry, Fishing and Hunting, the aggregation level 74 data was used for NAICS codes 11, 21 and 23.

    QCEW reports on employment in Public Administration as NAICS 92. However, many government activities are reported with an industry specific code - such as transportation or utilities even if those may be public governmental entities. In 2021 for the Bay Area, the largest industry groupings under public ownership are Education and health services (58%); Public administration (29%) and Trade, transportation, and utilities (29%). With the exception of Education and health services, all other public activities were coded as government/public administration, regardless of industry group.

    For the county data there were some industries that reported 0 jobs or did not report jobs at the desired aggregation/NAICS level for the following counties/years:

    Farm:
    (aggregation level: 74, NAICS code: 11) - Contra Costa: 2008-2010 - Marin: 1990-2006, 2008-2010, 2014-2020 - Napa: 1990-2004, 2013-2021 - San Francisco: 2019-2020 - San Mateo: 2013

    Information:
    (aggregation level: 73, NAICS code: 51) - Solano: 2001

    Financial Activities:
    (aggregation level: 73, NAICS codes: 52, 53) - Solano: 2001

    Unclassified:
    (aggregation level: 73, NAICS code: 99) - All nine Bay Area counties: 1990-2000 - Marin, Napa, San Mateo, and Solano: 2020 - Napa: 2019 - Solano: 2001

  18. National Compensation Survey - Modeled Wage Estimates

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). National Compensation Survey - Modeled Wage Estimates [Dataset]. https://catalog.data.gov/dataset/national-compensation-survey-modeled-wage-estimates-5de7e
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The National Compensation Survey (NCS) program produces information on wages by occupation for many metropolitan areas.The Modeled Wage Estimates (MWE) provide annual estimates of average hourly wages for occupations by selected job characteristics and within geographical location. The job characteristics include bargaining status (union and nonunion), part- and full-time work status, incentive- and time-based pay, and work levels by occupation. The modeled wage estimates are produced using a statistical procedure that combines survey data collected by the National Compensation Survey (NCS) and the Occupational Employment Statistics (OES) programs. Borrowing from the strengths of the NCS, information on job characteristics and work levels, and from the OES, the occupational and geographic detail, the modeled wage estimates provide more detail on occupational average hourly wages than either program is able to provide separately. Wage rates for different work levels within occupation groups also are published. Data are available for private industry, State and local governments, full-time workers, part-time workers, and other workforce characteristics.

  19. T

    Vital Signs: Jobs – by subcounty

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Mar 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2020). Vital Signs: Jobs – by subcounty [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-subcounty/67g7-4af5
    Explore at:
    csv, application/rssxml, json, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Mar 5, 2020
    Dataset authored and provided by
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Jobs (LU2)

    FULL MEASURE NAME Employment estimates by place of work

    LAST UPDATED March 2020

    DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.

    DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/

    U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/

    U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/

    Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/

    METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed.

    For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017.

    The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  20. M

    Median Weekly Earnings - Full-Time Workers (1979-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Median Weekly Earnings - Full-Time Workers (1979-2025) [Dataset]. https://www.macrotrends.net/3470/median-weekly-earnings-full-time-workers
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1979 - 2025
    Area covered
    United States
    Description

    Data measure usual weekly earnings of wage and salary workers. Wage and salary workers are workers who receive wages, salaries, commissions, tips, payment in kind, or piece rates. The group includes employees in both the private and public sectors but, for the purposes of the earnings series, it excludes all self-employed persons, both those with incorporated businesses and those with unincorporated businesses. Usual weekly earnings represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received (at the main job in the case of multiple jobholders). Prior to 1994, respondents were asked how much they usually earned per week. Since January 1994, respondents have been asked to identify the easiest way for them to report earnings (hourly, weekly, biweekly, twice monthly, monthly, annually, or other) and how much they usually earn in the reported time period. Earnings reported on a basis other than weekly are converted to a weekly equivalent. The term "usual" is determined by each respondent's own understanding of the term. If the respondent asks for a definition of "usual," interviewers are instructed to define the term as more than half the weeks worked during the past 4 or 5 months. For more information see https://www.bls.gov/cps/earnings.htm

    The series comes from the 'Current Population Survey (Household Survey)'

    The source code is: LES1252881500

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bureau of Labor Statistics (2022). Occupational Employment and Wage Statistics (OES) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oes
Organization logo

Occupational Employment and Wage Statistics (OES)

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 16, 2022
Dataset provided by
Bureau of Labor Statisticshttp://www.bls.gov/
Description

The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes

Search
Clear search
Close search
Google apps
Main menu