In 2023, the population of the Boston-Cambridge-Newton metropolitan area in the United States was about 4.92 million people. This is a slight increase when compared with last year's population, which was about 4.9 million people.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Boston metro area from 1950 to 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Boston-Cambridge-Newton, MA-NH (MSA) (BOSPOP) from 2000 to 2024 about Boston, NH, MA, residents, population, and USA.
The gross domestic product (GDP) of the Greater Boston metro area has increased significantly since 2001. In 2022, the area's GDP amounted to 504.1 billion chained 2017 U.S. dollars, compared to 284.1 billion U.S. dollars in 2001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Boston population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Boston across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Boston was 653,833, a 0.09% increase year-by-year from 2022. Previously, in 2022, Boston population was 653,243, a decline of 0.61% compared to a population of 657,283 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Boston increased by 62,272. In this period, the peak population was 694,661 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Boston Population by Year. You can refer the same here
The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city
2020 Census data for the city of Boston, Boston neighborhoods, census tracts, block groups, and voting districts. In the 2020 Census, the U.S. Census Bureau divided Boston into 207 census tracts (~4,000 residents) made up of 581 smaller block groups. The Boston Planning and Development Agency uses the 2020 tracts to approximate Boston neighborhoods. The 2020 Census Redistricting data also identify Boston’s voting districts.
For analysis of Boston’s 2020 Census data including graphs and maps by the BPDA Research Division and Office of Digital Cartography and GIS, see 2020 Census Research Publications
For a complete official data dictionary, please go to 2020 Census State Redistricting Data (Public Law 94-171) Summary File, Chapter 6. Data Dictionary. 2020 Census State Redistricting Data (Public Law 94-171) Summary File
2020 Census Block Groups In Boston
Boston Neighborhood Boundaries Approximated By 2020 Census Tracts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Resident Population in Boston-Cambridge-Newton, MA-NH (MSA) was 5025.51700 Thous. of Persons in January of 2024, according to the United States Federal Reserve. Historically, Resident Population in Boston-Cambridge-Newton, MA-NH (MSA) reached a record high of 5025.51700 in January of 2024 and a record low of 4402.61100 in January of 2000. Trading Economics provides the current actual value, an historical data chart and related indicators for Resident Population in Boston-Cambridge-Newton, MA-NH (MSA) - last updated from the United States Federal Reserve on May of 2025.
This statistic displays the average physician-to-population ratio in select U.S. metropolitan areas as of 2013. During this year, there was an average of 268.1 physicians per 100,000 population in Detroit. Boston has one of the overall highest average wait times for a physician appointment. The average cumulative wait time is approximately 18.5 days in 2014, which has decreased since 2004.
This map shows a simple summary of the social vulnerability of populations in the United States. Using Census 2010 information, the map answers the question “Where are the areas of relatively greater potential impact from disaster events within the U.S.?” from the perspective of social vulnerability to hazards. In other words, all areas of the U.S. are assessed relative to each other. Local and regional assessments of social vulnerability should apply the same model to their multi-county or multi-state region. For emergency response planning and hazard mitigation, populations can be assessed by their vulnerability to various hazards (fire, flood, etc). Physical vulnerability refers to a population’s exposure to specific potential hazards, such as living in a designated flood plain. There are various methods for calculating the potential or real geographic extents for various types of hazards. Social vulnerability refers to sensitivity to this exposure due to population and housing characteristics: age, low income, disability, home value or other factors. The social vulnerability score presented in this web service is based upon a 2000 article from the Annals of the Association of American Geographers which sums the values of 8 variables as a surrogate for "social vulnerability". For example, low-income seniors may not have access to a car to simply drive away from an ongoing hazard such as a flood. A map of the flood’s extent can be overlaid on the social vulnerability layer to allow planners and responders to better understand the demographics of the people affected by the hazard. This map depicts social vulnerability at the block group level. A high score indicates an area is more vulnerable. This web service provides a simplistic view of social vulnerability. There are more recent methods and metrics for determining and displaying social vulnerability, including the Social Vulnerability Index (SoVI) which capture the multi-dimensional nature of social vulnerability across space. See www.sovius.org for more information on SoVI. The refereed journal article used to guide the creation of the model in ModelBuilder was: Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000. "Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina." Annals of the Association of American Geographers 90(4): 713-737. Additionally, a white paper used to guide creation of the model in ModelBuilder was "Handbook for Conducting a GIS-Based Hazards Assessment at the County Level" by Susan L. Cutter, Jerry T. Mitchell, and Michael S. Scott.Off-the-shelf software and data were used to generate this index. ModelBuilder in ArcGIS 10.1 was used to connect the data sources and run the calculations required by the model.-------------------------The Civic Analytics Network collaborates on shared projects that advance the use of data visualization and predictive analytics in solving important urban problems related to economic opportunity, poverty reduction, and addressing the root causes of social problems of equity and opportunity. For more information see About the Civil Analytics Network.
Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Demographic Data for Boston’s Neighborhoods, 1950-2019
Boston is a city defined by the unique character of its many neighborhoods. The historical tables created by the BPDA Research Division from U.S. Census Decennial data describe demographic changes in Boston’s neighborhoods from 1950 through 2010 using consistent tract-based geographies. For more analysis of these data, please see Historical Trends in Boston's Neighborhoods. The most recent available neighborhood demographic data come from the 5-year American Community Survey (ACS). The ACS tables also present demographic data for Census-tract approximations of Boston’s neighborhoods. For pdf versions of the data presented here plus earlier versions of the analysis, please see Boston in Context.
https://www.massachusetts-demographics.com/terms_and_conditionshttps://www.massachusetts-demographics.com/terms_and_conditions
A dataset listing Massachusetts cities by population for 2024.
How racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Boston by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Boston across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.93% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Boston Population by Race & Ethnicity. You can refer the same here
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package, foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2023, the population of the Boston-Cambridge-Newton metropolitan area in the United States was about 4.92 million people. This is a slight increase when compared with last year's population, which was about 4.9 million people.