In 2023, the population of the Boston-Cambridge-Newton metropolitan area in the United States was about 4.92 million people. This is a slight increase when compared with last year's population, which was about 4.9 million people.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Boston-Cambridge-Newton, MA-NH (MSA) (BOSPOP) from 2000 to 2024 about Boston, NH, MA, residents, population, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of population level and growth rate for the Boston metro area from 1950 to 2025.
The gross domestic product (GDP) of the Greater Boston metro area has increased significantly since 2001. In 2022, the area's GDP amounted to ***** billion chained 2017 U.S. dollars, compared to ***** billion U.S. dollars in 2001.
The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Boston population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Boston across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Boston was 653,833, a 0.09% increase year-by-year from 2022. Previously, in 2022, Boston population was 653,243, a decline of 0.61% compared to a population of 657,283 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Boston increased by 62,272. In this period, the peak population was 694,661 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Boston Population by Year. You can refer the same here
2020 Census data for the city of Boston, Boston neighborhoods, census tracts, block groups, and voting districts. In the 2020 Census, the U.S. Census Bureau divided Boston into 207 census tracts (~4,000 residents) made up of 581 smaller block groups. The Boston Planning and Development Agency uses the 2020 tracts to approximate Boston neighborhoods. The 2020 Census Redistricting data also identify Boston’s voting districts.
For analysis of Boston’s 2020 Census data including graphs and maps by the BPDA Research Division and Office of Digital Cartography and GIS, see 2020 Census Research Publications
For a complete official data dictionary, please go to 2020 Census State Redistricting Data (Public Law 94-171) Summary File, Chapter 6. Data Dictionary. 2020 Census State Redistricting Data (Public Law 94-171) Summary File
2020 Census Block Groups In Boston
Boston Neighborhood Boundaries Approximated By 2020 Census Tracts
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Boston city, Massachusetts. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Demographic Data for Boston’s Neighborhoods, 1950-2019
Boston is a city defined by the unique character of its many neighborhoods. The historical tables created by the BPDA Research Division from U.S. Census Decennial data describe demographic changes in Boston’s neighborhoods from 1950 through 2010 using consistent tract-based geographies. For more analysis of these data, please see Historical Trends in Boston's Neighborhoods. The most recent available neighborhood demographic data come from the 5-year American Community Survey (ACS). The ACS tables also present demographic data for Census-tract approximations of Boston’s neighborhoods. For pdf versions of the data presented here plus earlier versions of the analysis, please see Boston in Context.
How racially diverse are residents in Massachusetts? This topic shows the demographic breakdown of residents by race/ethnicity and the increases in the Non-white population since 2010.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also nee
This statistic displays the average physician-to-population ratio in select U.S. metropolitan areas as of 2013. During this year, there was an average of ***** physicians per 100,000 population in Detroit. Boston has one of the overall highest average wait times for a physician appointment. The average cumulative wait time is approximately **** days in 2014, which has decreased since 2004.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed Persons in Boston-Cambridge-Nashua, MA-NH (NECTA) (LAUMT257165000000005) from Jan 1990 to Dec 2024 about NH, MA, household survey, personal, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate in Boston-Cambridge-Nashua, MA-NH (NECTA) (LAUMT257165000000003A) from 1990 to 2023 about NH, MA, household survey, unemployment, rate, and USA.
Census tracts are created by the U.S. Census Bureau to be small, relatively permanent statistical subdivisions of a county. Census tracts average about 4,000 inhabitants: minimum population –1,200 and maximum population –8,000. Census tracts are split or merged every 10 years, depending on population change, with local feedback through the Participant Statistical Areas Program (PSAP).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of Massachusetts from 1900 to 2024.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The BPDA Research Division prepared Census data on total population, population by race and ethnicity, voting-age population, group quarters populations, and housing occupancy for use in the 2022 City Council redistricting process. These data reflect 2020 census block-level data from the 2020 Decennial Census P.L. 94-171 Redistricting Data aggregated to the 275 precincts (as amended April 6, 2022) and the 9 current City Council Districts. Also included are 2010 estimates for these geographies based on 2010 census block-level.
Notes on coding of Race and Ethnicity:
The data presented here follow the conventions recommended by the Department of Justice in their September 1, 2021 guidance on the use of race and ethnicity data in redistricting. This differs from other commonly reported race and ethnicity groupings in that it groups those reporting 2 races, one White and one non-White, as being members of the non-White race reported. Thus a person reporting White and Black would be categorized here as Black. All residents of Hispanic or Latino origin, regardless of reported race, are grouped together. This coding appears on page 12 of the guidance that can be found here: https://www.justice.gov/opa/press-release/file/1429486/download
Notes on 2010 data:
For 2010 data the BPDA Research Division crosswalked 2010 census block data to 2020 boundaries using a combination of block assignment and areal interpolation based on Census Tiger shapefiles and the publicly available boundary files for Boston electoral geographies. For blocks split across 2020 boundaries the entire 2010 population was assigned to one side of the boundary if no residential structures within that block existed on the other side of the boundary. In cases where residential structures were present on both sides of the boundary, areal interpolation was used to assign the block's population and housing units based on the share of the land area of the block falling on either side of the boundary. These numbers will differ from those produced using different crosswalking methods.
https://www.icpsr.umich.edu/web/ICPSR/studies/38721/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38721/terms
The Healthy Neighborhoods Study (HNS) aimed to better understand the relationship between urban development, neighborhood conditions, and population health in Boston. More specifically, the research completed was the planning and baseline phase for a longer 9 year longitudinal study with two overarching aims: to determine how to measure and evaluate the mid- to long-term impacts of transit-oriented development on neighborhood conditions and population health, and to better understand the drivers and mechanisms that mediate the relationship between neighborhoods and health. The study tracks measures in health, development, neighborhood conditions and resident experiences in nine urban centers in the Boston-metro area.
In 2023, the population of the Boston-Cambridge-Newton metropolitan area in the United States was about 4.92 million people. This is a slight increase when compared with last year's population, which was about 4.9 million people.