Explore a full description of the map.This 2020 political boundary data is from Garmin International and the United States Central Intelligence Agency The World Factbook and compiled by Esri. One layer includes the boundary lines for countries and another for states and provinces. These layers do not include contested boundaries and any you see are likely on the basemap you have chosen.CreditsEsri; Global Mapping International; U.S. Central Intelligence Agency (The World Factbook). From National Geographic MapMaker.Terms of Use This work is licensed under the Esri Master License Agreement.View Summary | View Terms of Use
Use Constraints:This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current boundaries of PWSs in California. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use.Description:This mapping tool provides a representation of the general PWS boundaries for water service, wholesaler and jurisdictional areas. The boundaries were created originally by collection via crowd sourcing by CDPH through the Boundary Layer Tool, this tool was retired as of June 30, 2020. State Water Resources Control Board – Division of Drinking Water is currently in the process of verifying the accuracy of these boundaries and working on a tool for maintaining the current boundaries and collecting boundaries for PWS that were not in the original dataset. Currently, the boundaries are in most cases have not been verified. Map Layers· Drinking Water System Areas – representation of the general water system boundaries maintained by the State Water Board. This layer contains polygons with associated data on the water system and boundary the shape represents.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset.· LPA office locations – represents the locations of the Local Primacy Agency overseeing the water system in that county. Address and contact information are attributes of this dataset· California Senate Districts – represents the boundaries of the senate districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California Senate Districts – represents the boundaries of the assembly districts in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.· California County – represents the boundaries of the counties in California included as a reference layer in order to perform analysis with the Drinking Water System Boundaries layers.Informational Pop-up Box for Boundary layer· Water System No. – unique identifier for each water system· Water System Name – name of water system· Regulating Agency – agency overseeing the water system· System Type – classification of water system.· Population the approximate population served by the water system· Boundary Type – the type of water system boundary being displayed· Address Line 1 – the street or mailing address on file for the water system· Address Line 2 – additional line for street or mailing address on file for the water system, if applicable· City – city where water system located or receives mail· County – county where water system is located· Verification Status – the verification status of the water system boundary· Verified by – if the boundary is verified, the person responsible for the verification Date Created and Sources:This web app was most recently updated on July, 21, 2021. Each layer has a data created date and data source is indicated in the overview/metadata page and is valid up to the date provided.
Geolocet's Administrative Boundaries Spatial Data serves as the gateway to visualizing geographic distributions and patterns with precision. The comprehensive dataset covers all European countries, encompassing the boundaries of each country, as well as its political and statistical divisions. Tailoring data purchases to exact needs is possible, allowing for the selection of individual levels of geography or bundling all levels for a country with a discount. The seamless integration of administrative boundaries onto digital maps transforms raw data into actionable insights.
🌐 Coverage Across European Countries
Geolocet's Administrative Boundaries Data offers coverage across all European countries, ensuring access to the most up-to-date and accurate geographic information. From national borders to the finest-grained administrative units, this data enables informed choices based on verified and official sources.
🔍 Geographic Context for Strategic Decisions
Understanding the geographical context is crucial for strategic decision-making. Geolocet's Administrative Boundaries Spatial Data empowers exploration of geo patterns, planning expansions, analysis of regional demographics, and optimization of operations with precision. Whether it is for establishing new business locations, efficient resource allocation, or policy impact analysis, this data provides the essential geographic context for success.
🌍 Integration with Geolocet’s Demographic Data
The integration of Geolocet's Administrative Boundaries Spatial Data with Geolocet's Demographic Data creates a synergy that enriches insights. The combination of administrative boundaries and demographic information offers a comprehensive understanding of regions and their unique characteristics. This integration enables tailoring of strategies, marketing campaigns, and resource allocation to specific areas with confidence.
🌍 Integration with Geolocet’s POI Data
Combining Geolocet's Administrative Boundaries Spatial Data with our POI (Points of Interest) Data unveils not only the administrative divisions but also insights into the local characteristics of these areas. Overlaying POI data on administrative boundaries reveals details about the number and types of businesses, services, and amenities within specific regions. Whether conducting market research, identifying prime locations for retail outlets, or analyzing the accessibility of essential services, this combined data empowers a holistic view of target areas.
🔍 Customized Data Solutions with DaaS
Geolocet's Data as a Service (DaaS) model offers flexibility tailored to specific needs. The transparent pricing model ensures cost-efficiency, allowing payment solely for the required data. Whether nationwide administrative boundary data or specific regional details are needed, Geolocet provides a solution to match individual objectives. Contact us today to explore how Geolocet's Administrative Boundaries Spatial Data can elevate decision-making processes and provide the essential geographic data for success.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market's value is estimated at $2 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is fueled by several factors, including the rising adoption of location-based services, the proliferation of readily available geographic data, and the growing need for effective data visualization in business intelligence and marketing. The individual user segment currently holds a significant share, but corporate adoption is rapidly expanding, propelled by the need for sophisticated map-based analytics and internal communication. Furthermore, the paid use segment is anticipated to grow more quickly than the free use segment, reflecting the willingness of businesses and organizations to invest in advanced features and functionalities. This trend is further amplified by the increasing integration of interactive maps into various platforms, such as business intelligence dashboards and website content. Geographic expansion is also a significant growth driver. North America and Europe currently dominate the market, but the Asia-Pacific region is showing significant promise due to rapid technological advancements and increasing internet penetration. Competitive pressures remain high, with established players such as Google, Mapbox, and ArcGIS StoryMaps vying for market share alongside innovative startups offering specialized solutions. The market's restraints are primarily focused on the complexities of data integration and the technical expertise required for effective map creation. However, ongoing developments in user-friendly interfaces and readily available data integration tools are mitigating these challenges. The future of the interactive map creation tools market promises even greater innovation, fueled by developments in augmented reality (AR), virtual reality (VR), and 3D visualization technologies. We expect to see the emergence of more sophisticated tools catering to niche requirements, further driving market segmentation and specialization. Continued investment in research and development will also play a crucial role in pushing the boundaries of what's possible with interactive map creation. The market presents opportunities for companies to develop tools which combine data analytics and interactive map design.
Australia's Land Borders is a product within the Foundation Spatial Data Framework (FSDF) suite of datasets. It is endorsed by the ANZLIC - the Spatial Information Council and the Intergovernmental Committee on Surveying and Mapping (ICSM) as a nationally consistent and topologically correct representation of the land borders published by the Australian states and territories.
The purpose of this product is to provide: (i) a building block which enables development of other national datasets; (ii) integration with other geospatial frameworks in support of data analysis; and (iii) visualisation of these borders as cartographic depiction on a map. Although this dataset depicts land borders, it is not nor does it suggests to be a legal definition of these borders. Therefore it cannot and must not be used for those use-cases pertaining to legal context.
This product is constructed by Geoscience Australia (GA), on behalf of the ICSM, from authoritative open data published by the land mapping agencies in their respective Australian state and territory jurisdictions. Construction of a nationally consistent dataset required harmonisation and mediation of data issues at abutting land borders. In order to make informed and consistent determinations, other datasets were used as visual aid in determining which elements of published jurisdictional data to promote into the national product. These datasets include, but are not restricted to: (i) PSMA Australia's commercial products such as the cadastral (property) boundaries (CadLite) and Geocoded National Address File (GNAF); (ii) Esri's World Imagery and Imagery with Labels base maps; and (iii) Geoscience Australia's GEODATA TOPO 250K Series 3. Where practical, Land Borders do not cross cadastral boundaries and are logically consistent with addressing data in GNAF.
It is important to reaffirm that although third-party commercial datasets are used for validation, which is within remit of the licence agreement between PSMA and GA, no commercially licenced data has been promoted into the product. Australian Land Borders are constructed exclusively from published open data originating from state, territory and federal agencies.
This foundation dataset consists of edges (polylines) representing mediated segments of state and/or territory borders, connected at the nodes and terminated at the coastline defined as the Mean High Water Mark (MHWM) tidal boundary. These polylines are attributed to convey information about provenance of the source. It is envisaged that land borders will be topologically interoperable with the future national coastline dataset/s, currently being built through the ICSM coastline capture collaboration program. Topological interoperability will enable closure of land mass polygon, permitting spatial analysis operations such as vector overly, intersect, or raster map algebra. In addition to polylines, the product incorporates a number of well-known survey-monumented corners which have historical and cultural significance associated with the place name.
This foundation dataset is constructed from the best-available data, as published by relevant custodian in state and territory jurisdiction. It should be noted that some custodians - in particular the Northern Territory and New South Wales - have opted out or to rely on data from abutting jurisdiction as an agreed portrayal of their border. Accuracy and precision of land borders as depicted by spatial objects (features) may vary according to custodian specifications, although there is topological coherence across all the objects within this integrated product. The guaranteed minimum nominal scale for all use-cases, applying to complete spatial coverage of this product, is 1:25 000. In some areas the accuracy is much better and maybe approaching cadastre survey specification, however, this is an artefact of data assembly from disparate sources, rather than the product design. As the principle, no data was generalised or spatially degraded in the process of constructing this product.
Some use-cases for this product are: general digital and web map-making applications; a reference dataset to use for cartographic generalisation for a smaller-scale map applications; constraining geometric objects for revision and updates to the Mesh Blocks, the building blocks for the larger regions of the Australian Statistical Geography Standard (ASGS) framework; rapid resolution of cross-border data issues to enable construction and visual display of a common operating picture, etc.
This foundation dataset will be maintained at irregular intervals, for example if a state or territory jurisdiction decides to publish or republish their land borders. If there is a new version of this dataset, past version will be archived and information about the changes will be made available in the change log.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, will be composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats.
This map service is provided by NC Department of Transportation and represents Municipal Boundaries defined through the Powell Bill 2023.This data was created to assist governmental agencies and others in making resource management decisions through use of a Geographic Information System. Municipal boundaries are recognized as a base cartographic layer for location analysis. The data are current for fiscal year 2023.These Municipal Boundaries data are based on the Powell Bill Program maps for the 2023 fiscal year. Municipalities in North Carolina that participate in the Powell Bill Program are required to submit to NCDOT on a regular basis. These data include incorporated municipalities in North Carolina that participate in the Powell Bill Program. Boundaries of municipalities which do not participate in the Powell Bill Program are also included in this data. Sources for the boundaries vary in scale and format as provided by the Municipalities.Additional metadata: GIS Data Layers (ncdot.gov)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City Boundary
NZ Parcel Boundaries Wireframe provides a map of land, road and other parcel boundaries, and is especially useful for displaying property boundaries.
This map service is for visualisation purposes only and is not intended for download. You can download the full parcels data from the NZ Parcels dataset.
This map service provides a dark outline and transparent fill, making it perfect for overlaying on our basemaps or any map service you choose.
Data for this map service is sourced from the NZ Parcels dataset which is updated weekly with authoritative data direct from LINZ’s Survey and Title system. Refer to the NZ Parcel layer for detailed metadata.
To simplify the visualisation of this data, the map service filters the data from the NZ Parcels layer to display parcels with a status of 'current' only.
This map service has been designed to be integrated into GIS, web and mobile applications via LINZ’s WMTS and XYZ tile services. View the Services tab to access these services.
See the LINZ website for service specifications and help using WMTS and XYZ tile services and more information about this service.
This layer serves as the authoritative geographic data source for all school district area boundaries in California. School districts are single purpose governmental units that operate schools and provide public educational services to residents within geographically defined areas. Agencies considered school districts that do not use geographically defined service areas to determine enrollment are excluded from this data set. In order to view districts represented as point locations, please see the "California School District Offices" layer. The school districts in this layer are enriched with additional district-level attribute information from the California Department of Education's data collections. These data elements add meaningful statistical and descriptive information that can be visualized and analyzed on a map and used to advance education research or inform decision making.School districts are categorized as either elementary (primary), high (secondary) or unified based on the general grade range of the schools operated by the district. Elementary school districts provide education to the lower grade/age levels and the high school districts provide education to the upper grade/age levels while unified school districts provide education to all grade/age levels in their service areas. Boundaries for the elementary, high and unified school district layers are combined into a single file. The resulting composite layer includes areas of overlapping boundaries since elementary and high school districts each serve a different grade range of students within the same territory. The 'DistrictType' field can be used to filter and display districts separately by type.Boundary lines are maintained by the California Department of Education (CDE) and are effective in the 2023-24 academic year . The CDE works collaboratively with the US Census Bureau to update and maintain boundary information as part of the federal School District Review Program (SDRP). The Census Bureau uses these school district boundaries to develop annual estimates of children in poverty to help the U.S. Department of Education determine the annual allocation of Title I funding to states and school districts. The National Center for Education Statistics (NCES) also uses the school district boundaries to develop a broad collection of district-level demographic estimates from the Census Bureau’s American Community Survey (ACS).The school district enrollment and demographic information are based on student enrollment counts collected on Fall Census Day (first Wednesday in October) in the 2023-24 academic year. These data elements are collected by the CDE through the California Longitudinal Achievement System (CALPADS) and can be accessed as publicly downloadable files from the Data & Statistics web page on the CDE website https://www.cde.ca.gov/ds.
Our World Administrative Boundaries Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The default map provides the following land information: address, crown land, planning zone, planning overlay, bushfire prone area and SPI. The polygon outline is not aligned with parcel boundary. Map information is gathered from various sources, we therefore take no responsibility for the accuracy of the data.
This layer identifies corporate boundaries for all 43 municipal jurisdictions in Westchester County. Coverage originally obtained from New York State Office for Real Property Services (ORPS), and has been substantially modified to better align with current municipal tax parcel boundaries (WCparcels) based on a compilation of 2012 municipal tax parcel datasets. As all of Westchester's town's and cities compile their tax parcel databases independent of one another, there are situations were the tax parcels do not line up at the municipal borders, often resulting in gaps or overlaps of tax parcels at the border areas. This update sought to re-align boundaries to best follow the municipal boundaries as defined by the tax parcels, and often involved making the best possible spatial compromise where there were gaps or overlaps in tax map jurisdictions. It also reflects the 2011 municipal boundary change that resluted from the annexation of a tax parcel from the Town of Mount Pleasant to the Town of New Castle.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
KMZ File Format- This data set consists of digital data describing BLM Coloardo's Administrative Unit Boundaries in the State of Colorado, also known as BLM Colorado Field Office Areas. This data set was derived from BLM Colorado Field Office data captured at a scale of 1:24,000 and joined into a resulting statewide map layer. Differences in data capture techniques resulted in the data editor dropping some boundaries from various Field Office Areas to avoid sliver problems. The data was snapped to the 2016 Geographic Coordinate Data Base (GCDB) for boundary consistency
Illinois Boundary-Based LayersThis dataset contains boundary and administrative layers for the state of Illinois, supporting regional planning, infrastructure development, and government decision-making. The dataset includes various geographic divisions, such as counties, municipalities, and economic regions.Layers Included:Counties – Official county boundaries in Illinois.Municipal Boundaries – City, town, and village limits within the state.Economic Development Regions – Defined regions for economic planning and policy initiatives.Legislative & Administrative Districts – Political and governance boundaries used for state and local representation.This feature dataset provides essential boundary and administrative layers for the state of Illinois, supporting regional planning, infrastructure development, broadband expansion, and government decision-making. The dataset includes official jurisdictional and economic boundaries, ensuring accurate spatial data for state agencies, municipalities, and economic planners. These layers are used for broadband infrastructure mapping, public policy implementation, zoning regulations, and funding allocation, making them a critical resource for data-driven decision-making across various sectors. Layers Included:
Census Blocks (2010) – Used for demographic analysis and broadband eligibility mapping. Congressional Districts (2020 Redistricting) – Updated federal legislative boundaries for policy analysis and representation. County Boundaries – Official county jurisdictional limits used for statewide and local planning. Electric Utility Boundaries – Defines service areas of electric providers for infrastructure coordination. Federal Lands – Identifies federally owned properties, including national parks, military bases, and protected lands. Opportunity Zones (Tracts) – Displays designated economic development zones to encourage investment and business growth. School Districts (E-Rate) – Represents school district boundaries to support education funding and broadband initiatives. State House Districts (2020 Redistricting) – Updated Illinois State House legislative boundaries. State Senate Districts (2020 Redistricting) – Updated Illinois State Senate legislative boundaries. Village Boundaries – Defines city, town, and village limits across Illinois. Townships/Precincts, Cities, and Villages – Displays townships and voting precincts; users can zoom in for detailed city and village boundaries.
Usage & Integration:
Supports State & Local Planning – Provides official jurisdictional boundaries for zoning, economic development, and public infrastructure projects. Broadband Expansion & Utility Coordination – Used for mapping broadband availability and planning utility infrastructure. Legislative & Policy Applications – Assists in election planning, representation, and legislative resource allocation. Public & Private Sector Use – Utilized by government agencies, municipalities, businesses, and researchers for geospatial analysis.
Change Log:
3/14/2025 - Updated item details with significant elaboration on what is included in this service. 1/30/2025 – Updated county and municipal boundaries to reflect recent administrative changes. 1/15/2025 – Added electric utility boundaries to support broadband and infrastructure coordination. 12/20/2024 – Refined opportunity zones and federal lands data for economic planning purposes. 11/10/2024 – Adjusted state and congressional district boundaries to match official redistricting updates. 10/05/2024 – Initial dataset release with core administrative and planning layers.
Access & Contact:
Dataset Access: Available in ArcGIS Online
This Illinois Boundary-Based Layers dataset provides a comprehensive and authoritative resource for regional planning, broadband expansion, utility coordination, and legislative mapping across the state.
Vector polygon map data of city limits from Palm Bay, Florida containing 1 feature.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
PLEASE NOTE: This data product is not available in Shapefile format or KML at https://naturalengland-defra.opendata.arcgis.com/datasets/Defra::living-england-habitat-map-phase-4/about, as the data exceeds the limits of these formats. Please select an alternative download format.This data product is also available for download in multiple formats via the Defra Data Services Platform at https://environment.data.gov.uk/explore/4aa716ce-f6af-454c-8ba2-833ebc1bde96?download=true.The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods.The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used:Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate DataFull metadata can be viewed on data.gov.uk.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset contains a comprehensive collection of geographic shapefiles representing the boundaries of countries and territories worldwide. The shapefiles define the outlines of each nation and are based on the most recent and accurate geographical data available. The dataset includes polygon geometries that accurately represent the territorial extent of each country, making it suitable for various geographical analyses, visualizations, and spatial applications.
Content: The dataset comprises shapefiles in the ESRI shapefile format (.shp) along with associated files (.shx, .dbf, etc.) that contain the attributes of each country, such as country names, ISO codes, and other relevant information. The polygons in the shapefiles correspond to the land boundaries of each nation, enabling precise mapping and spatial analysis.
Use Cases: This dataset can be utilized in a wide range of applications, including but not limited to:
Source: The shapefile data is sourced from reputable and authoritative geographic databases, ensuring its accuracy and reliability for diverse applications.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
From Parliamentary constituencies to council wards, Boundary-Line™ maps every administrative boundary in detail for you. And what's more, it's completely free to download and use.
Bring statistics to life For academics or policy-makers, Boundary-Line brings the statistics in your reports to life. It lets you show differences between regions or councils using easy-to-read shaded maps.
A robust framework Monitoring outcomes by area is key for public bodies. Boundary-Line gives you a robust analytical framework to ensure the right communities get the right resources.
Individual properties When you're consulting on updating boundaries to take account of population change, Boundary-Line lets you show on a map where the line's being drawn, right down to the level of individual properties.
Explore a full description of the map.This 2020 political boundary data is from Garmin International and the United States Central Intelligence Agency The World Factbook and compiled by Esri. One layer includes the boundary lines for countries and another for states and provinces. These layers do not include contested boundaries and any you see are likely on the basemap you have chosen.CreditsEsri; Global Mapping International; U.S. Central Intelligence Agency (The World Factbook). From National Geographic MapMaker.Terms of Use This work is licensed under the Esri Master License Agreement.View Summary | View Terms of Use