Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Boxplots have become an extremely popular display of distribution summaries for collections of data, especially when we need to visualize summaries for several collections simultaneously. The whiskers in the boxplot show only the extent of the tails for most of the data (with outside values denoted separately); more detailed information about the shape of the tails, such as skewness and “weight” relative to a standard reference distribution, is much better displayed via quantile–quantile (q-q) plots. We incorporate the q-q plot’s tail information into the traditional boxplot by replacing the boxplot’s whiskers with the tails from a q-q plot, and display these tails with confidence bands for the tails that would be expected from the tails of the reference distribution. We describe the construction of the “q-q boxplot” and demonstrate its advantages over earlier proposed boxplot modifications on data from economics and neuroscience, which illustrate the q-q boxplots’ effectiveness in showing important tail behavior especially for large datasets. The package qqboxplot (an extension to the ggplot2 package) is available for the R programming language. Supplementary files for this article are available online.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Mustafa Almitamy
Released under Apache 2.0
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.
Facebook
TwitterThis dataset contains mobile unit box plot imagery of CO, NO2, O3, PM10, and SO2 collected during the MILAGRO field project.
Facebook
Twitterhttps://www.rioxx.net/licenses/all-rights-reserved/https://www.rioxx.net/licenses/all-rights-reserved/
Data table for publication Illus. 6.13. Box plots of diversity scores for building interior and exterior.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The box and whisker plots were used to check for the variability between self reports activities and accelerometer blocks of activities
Facebook
TwitterThis module utilizes a user-friendly database exploring data selection, box-and-whisker plot, and correlation analysis. It also guides students on how to make a poster of their data and conclusions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RSV box-and-whisker diagram data for the search terms "malnutrition," "frailty," "sarcopenia," and "cachexia" from January 1, 2018 to January 1, 2022. The data is divided before and after the declaration of the COVID-19 pandemic.
Facebook
TwitterCollectively collected some of the Data Sets to practice and understand the business improvements.
You can find number of various attributes and cleaning is the part from where we have to start and then moving onto Visualizations and moving over to Modelling.
I would like to thank GOD for Giving me the opportunity to Study ad implement Data Science technology along with colleagues like you who are too contributing in making this world a better place.
Visualizations implemented such as BOX PLOTS/VIOLINS PLOT, best metric to impute data or the appropriate way to approach a data Set and lot more with the help of each other!
Let's Begin!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Source data for the box plots in the study titled "Metagenome-Assembled Genomes and Gene Catalog from the Chicken Gut Microbiome Aid in Deciphering Antibiotic Resistomes".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
S4 Table. Box plot and the statistical analysis for the diameters measured for the NCLPs obtained by AFM.
Facebook
Twitterhttps://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.15454/AGU4QEhttps://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.15454/AGU4QE
WIDEa is R-based software aiming to provide users with a range of functionalities to explore, manage, clean and analyse "big" environmental and (in/ex situ) experimental data. These functionalities are the following, 1. Loading/reading different data types: basic (called normal), temporal, infrared spectra of mid/near region (called IR) with frequency (wavenumber) used as unit (in cm-1); 2. Interactive data visualization from a multitude of graph representations: 2D/3D scatter-plot, box-plot, hist-plot, bar-plot, correlation matrix; 3. Manipulation of variables: concatenation of qualitative variables, transformation of quantitative variables by generic functions in R; 4. Application of mathematical/statistical methods; 5. Creation/management of data (named flag data) considered as atypical; 6. Study of normal distribution model results for different strategies: calibration (checking assumptions on residuals), validation (comparison between measured and fitted values). The model form can be more or less complex: mixed effects, main/interaction effects, weighted residuals.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
100 Students: Each student has a unique name, allowing for distinct identification. 5 Subjects: Marks are provided for five core subjects, offering insight into performance across different disciplines. Applications: Performance Analysis: Can be used to analyze individual student performance and overall class trends. Statistical Insights: Helps in generating insights such as average marks, distribution of scores, and identifying top and bottom performers. Data Visualization: Ideal for visualizations like bar charts, histograms, and box plots to study variations in marks. Structure: Student Name: Unique identifier for each student. Marks for 5 Subjects: Numeric values representing marks obtained in each subject.
Facebook
TwitterThe U.S. Geological Survey (USGS), in cooperation with the Missouri Department of Natural Resources (MDNR), collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network (AWQMN) and are stored and maintained by the USGS National Water Information System (NWIS) database. These data constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of the water resources of the State. Water-quality data collected between water years 1993 and 2017 were analyzed for long term trends and the network was investigated to identify data gaps or redundant data to assist MDNR on how to optimize the network in the future. This is a companion data release product to the Scientific Investigation Report: Richards, J.M., and Barr, M.N., 2021, General water-quality conditions, long-term trends, and network analysis at selected sites within the Ambient Water-Quality Monitoring Network in Missouri, water years 1993–2017: U.S. Geological Survey Scientific Investigations Report 2021–5079, 75 p., https://doi.org/10.3133/sir20215079. The following selected tables are included in this data release in compressed (.zip) format: AWQMN_EGRET_data.xlsx -- Data retrieved from the USGS National Water Information System database that was quality assured and conditioned for network analysis of the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_data.xlsx -- Data retrieved from the USGS National Water Information System database that was quality assured and conditioned for analysis of flow-weighted trends for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_outliers.xlsx -- Data flagged as outliers during analysis of flow-weighted trends for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_outliers_quarterly.xlsx -- Data flagged as outliers during analysis of flow-weighted trends using a simulated quarterly sampling frequency dataset for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_descriptive_statistics_WY1993-2017.xlsx -- Descriptive statistics for selected water-quality parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network The following selected graphics are included in this data release in .pdf format. Also included in this data release are web pages accessible for people with disabilities provided in compressed .zip format. The web pages present the same information as the .pdf files: Annual and seasonal discharge trends.pdf -- Graphics of discharge trends produced from the EGRET software for selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Annual_and_seasonal_discharge_trends_htm.zip -- Compressed web page presenting graphics of discharge trends produced from the EGRET software for selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics of simulated quarterly sampling frequency trends.pdf -- Graphics of results of simulated quarterly sampling frequency trends produced by the R-QWTREND software at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics_of_simulated_quarterly_sampling_frequency_trends_htm.zip -- Compressed web page presenting graphics of results of simulated quarterly sampling frequency trends produced by the R-QWTREND software at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics of median parameter values.pdf -- Graphics of median values for selected parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics_of_median_parameter_values_htm.zip -- Compressed web page presenting graphics of median values for selected parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter value versus time.pdf -- Scatter plots of the value of selected parameters versus time at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter_value_versus_time_htm.zip -- Compressed web page presenting scatter plots of the value of selected parameters versus time at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter value versus discharge.pdf -- Scatter plots of the value of selected parameters versus discharge at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter_value_versus_discharge_htm.zip -- Compressed web page presenting scatter plots of the value of selected parameters versus discharge at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of parameter value distribution by season.pdf -- Seasonal boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Seasons defined as Winter (December, January, and February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and November). Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_parameter_value_distribution_by_season_htm.zip -- Compressed web page presenting seasonal boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Seasons defined as Winter (December, January, and February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and November). Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of sampled discharge compared with mean daily discharge.pdf -- Boxplots of the distribution of discharge collected at the time of sampling of selected parameters compared with the period of record discharge distribution from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_sampled_discharge_compared_with_mean_daily_discharge_htm.zip -- Compressed web page presenting boxplots of the distribution of discharge collected at the time of sampling of selected parameters compared with the period of record discharge distribution from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of parameter value distribution by month.pdf -- Monthly boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_parameter_value_distribution_by_month_htm.zip -- Compressed web page presenting monthly boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Overview This project analyzes life expectancy across countries, utilizing data from 2000 to 2015. The study examines how key socioeconomic and health factors influence life expectancy. Factors such as GDP, adult mortality, schooling, HIV/AIDS prevalence, and BMI are included in the analysis, which uses multiple linear regression and mixed-effects modeling to determine which variables significantly affect life expectancy.
Data Description The dataset includes life expectancy information and its influencing factors from various countries over a 15-year period (2000-2015). The data was sourced from the WHO Life Expectancy Dataset available on Kaggle. It comprises both continuous and categorical variables, including: • Life Expectancy (Dependent Variable): Average number of years an individual is expected to live. Continuous Variables: o GDP per capita o Adult Mortality (per 1000 individuals aged 15-65) o Schooling (mean years of education) o Alcohol consumption per capita Categorical Variables: o HIV/AIDS prevalence o Country status (Developed vs. Developing) o BMI category (Underweight, Normal, Overweight, Obese)
Problem Statement Life expectancy is a crucial metric for assessing the overall health and well-being of populations. It varies significantly between countries due to economic, social, and health factors. This project seeks to identify the most important variables that predict life expectancy, offering insights for policymakers on improving public health and longevity in their populations. Hypotheses 1. Higher GDP leads to higher life expectancy. 2. Higher adult mortality results in lower life expectancy. 3. More years of schooling increase life expectancy. 4. Higher HIV/AIDS prevalence reduces life expectancy. 5. Living in a developed country increases life expectancy. 6. Higher BMI (underweight or obese) correlates with reduced life expectancy. 7. Higher alcohol consumption reduces life expectancy.
Methodology • Data Preprocessing: Missing values were handled by imputation, and skewed variables (like GDP) were log-transformed to improve model performance. • Exploratory Data Analysis: Visualizations (histograms, scatterplots, and box plots) were used to understand the relationships between independent variables and life expectancy. Modeling: o Multiple Linear Regression was used to examine how each continuous and categorical variable impacts life expectancy. o Mixed-effects modeling was applied to account for country-specific effects, capturing variability across different nations.
Key Results 1. GDP: Log-transformed GDP had a significant positive effect on life expectancy, with an adjusted R² of 0.29. Higher income is positively correlated with longer life expectancy. 2. Adult Mortality: Increased adult mortality significantly reduced life expectancy. For every unit increase in adult mortality, life expectancy decreased by 0.042 years. 3. Schooling: More years of schooling was strongly correlated with longer life expectancy, reflecting the importance of education in enhancing health outcomes. 4. HIV/AIDS: Countries with higher HIV/AIDS prevalence had lower life expectancy, with significant negative coefficients for all levels of prevalence. 5. Country Status: Developed countries had significantly higher life expectancy than developing countries, with an average difference of about 1.52 years. 6. BMI: While underweight and obese categories were significant predictors, the relationship between BMI and life expectancy was complex, suggesting that high-income countries might offset health risks through medical care. 7. Alcohol Consumption: Contrary to initial expectations, alcohol consumption did not have a statistically significant effect on life expectancy in this model.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Canadian Environmental Sustainability Indicators (CESI) program provides data and information to track Canada's performance on key environmental sustainability issues. The Nutrients in the St. Lawrence River indicator reports on the status of total phosphorus and total nitrogen concentrations along the St. Lawrence River. It rates total nitrogen and total phosphorus status based on whether total phosphorus and total nitrogen concentrations exceed Quebec's total phosphorus water quality guideline for the protection of aquatic life and a total nitrogen water quality guideline for the protection of aquatic life specific to the St. Lawrence River. Exceeding a water quality guideline suggests a greater risk to the health of the St. Lawrence River ecosystem posed by phosphorus and/or nitrogen.Information is provided to Canadians in a number of formats including: static and interactive maps, charts and graphs, HTML and CSV data tables and downloadable reports. See supplementary documentation for data sources and details on how those data were collected and how the indicator was calculated.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
Figure_data.mat has all the data points used to generate the boxplots and CDF plot. Data are stored in variables fX (X = 1 to 10) for each figure. plot_figureX.m (X = 1 to 10) can be used to regenerate boxplots and CDF plot.
Facebook
TwitterThe file Supp_data_1.xlsx contains the origin and authentication information of the 1,031 selected strains.The file Supp_data2.xlsx contains all phenotype scores obtained for the 1,031 fungal strains on the 5 tested industrial compounds, as well as phenotype correlation analysis and the list of " best score strains".The file Supp_data3.xlsx contains statistical test results related to box plots shown in Fig.6 in the main article.
Facebook
TwitterThe data used to produce the box plots of the figure 5 are presented in this table
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Boxplots have become an extremely popular display of distribution summaries for collections of data, especially when we need to visualize summaries for several collections simultaneously. The whiskers in the boxplot show only the extent of the tails for most of the data (with outside values denoted separately); more detailed information about the shape of the tails, such as skewness and “weight” relative to a standard reference distribution, is much better displayed via quantile–quantile (q-q) plots. We incorporate the q-q plot’s tail information into the traditional boxplot by replacing the boxplot’s whiskers with the tails from a q-q plot, and display these tails with confidence bands for the tails that would be expected from the tails of the reference distribution. We describe the construction of the “q-q boxplot” and demonstrate its advantages over earlier proposed boxplot modifications on data from economics and neuroscience, which illustrate the q-q boxplots’ effectiveness in showing important tail behavior especially for large datasets. The package qqboxplot (an extension to the ggplot2 package) is available for the R programming language. Supplementary files for this article are available online.