9 datasets found
  1. n

    BrainWeb - Simulated Brain Database

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). BrainWeb - Simulated Brain Database [Dataset]. http://identifiers.org/RRID:SCR_003263
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Database of human brain images derived from a realistic phantom and generated using a sophisticated MRI simulator. Custom simulations may be generated to match a user's selected parameters. The goal is to aid validation of computer-aided quantitative analysis of medical image data. The SBD contains a set of realistic MRI data volumes produced by an MRI simulator. These data can be used by the neuroimaging community to evaluate the performance of various image analysis methods in a setting where the truth is known. The SBD contains simulated brain MRI data based on two anatomical models: normal and multiple sclerosis (MS). For both of these, full 3-dimensional data volumes have been simulated using three sequences (T1-, T2-, and proton-density- (PD-) weighted) and a variety of slice thicknesses, noise levels, and levels of intensity non-uniformity. These data are available for viewing in three orthogonal views (transversal, sagittal, and coronal), and for downloading.

  2. Image quality parameters of the BrainWeb data set.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucas D. Eggert; Jens Sommer; Andreas Jansen; Tilo Kircher; Carsten Konrad (2023). Image quality parameters of the BrainWeb data set. [Dataset]. http://doi.org/10.1371/journal.pone.0045081.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lucas D. Eggert; Jens Sommer; Andreas Jansen; Tilo Kircher; Carsten Konrad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note. SNR  =  signal-to-noise ratio; CNR  =  contrast-to-noise ratio.

  3. BrainWeb Training Data, Pre-Trained Model and Cartesian Brain Ultra-Low...

    • zenodo.org
    bin
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andreas Kofler; Andreas Kofler; David Schote; David Schote (2025). BrainWeb Training Data, Pre-Trained Model and Cartesian Brain Ultra-Low Field MR Data for the Spatially-Adaptive TV Example in MRpro [Dataset]. http://doi.org/10.5281/zenodo.15706456
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andreas Kofler; Andreas Kofler; David Schote; David Schote
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 20, 2025
    Description

    This dataset contains the following:

    • 2500 images generated from the BrainWeb dataset [Aubert-Broche et al, IEEE TMI 2006] using an inversion recovery signal model from MRpro.
    • A set of pre-trained weights of a network to estimate spatially adaptive regularization parameter weights to be used in the total variation (TV)-minmization example in MRpro.
    • A brain MR scan of a healthy volunteer obtained with an OSI2 ONE ultra-low field scanner (https://www.opensourceimaging.org/project/osii-one)

    For further details, please have a look at the examples of MRpro (https://github.com/PTB-MR/mrpro).


  4. Classification results on Brainweb T1-weighted MRI data in different levels...

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sepideh Yazdani; Rubiyah Yusof; Alireza Karimian; Yasue Mitsukira; Amirshahram Hematian (2023). Classification results on Brainweb T1-weighted MRI data in different levels of bias field and noise (pn). [Dataset]. http://doi.org/10.1371/journal.pone.0151326.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Sepideh Yazdani; Rubiyah Yusof; Alireza Karimian; Yasue Mitsukira; Amirshahram Hematian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Classification results on Brainweb T1-weighted MRI data in different levels of bias field and noise (pn).

  5. Computational complexity, converging time, number of iterations and per...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zexuan Ji; Yubo Huang; Quansen Sun; Guo Cao; Yuhui Zheng (2023). Computational complexity, converging time, number of iterations and per iteration time (average ± standard deviation, UNIT: Second) by applying five algorithms on BrainWeb dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0168449.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Zexuan Ji; Yubo Huang; Quansen Sun; Guo Cao; Yuhui Zheng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Computational complexity, converging time, number of iterations and per iteration time (average ± standard deviation, UNIT: Second) by applying five algorithms on BrainWeb dataset.

  6. Datasets of "Influence of contrast and texture based image modifications on...

    • zenodo.org
    zip
    Updated Dec 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suhang You; Suhang You; Mauricio Reyes; Mauricio Reyes (2022). Datasets of "Influence of contrast and texture based image modifications on the performance and attention shift of U-Net models for brain tissue segmentation" Part 12 of 14 [Dataset]. http://doi.org/10.5281/zenodo.7395031
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Suhang You; Suhang You; Mauricio Reyes; Mauricio Reyes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is part of the work https://www.frontiersin.org/articles/10.3389/fnimg.2022.1012639/full. This is the twelfth part of 14 parts of the full dataset (12/14). It contains 3 sets of simulated T1 weighted brain volumes in 3 simulated scanning sequences of spin-echo. The parameters of simulated scanning sequences are respectively repetition time (TR) = 600ms, 700ms, 800ms, and echo time (TE) = 30ms. Under each simulated scanning sequence, there are 500 brain volumes.

    The segmentation labels for each tissue are contained in the first part which you may find at https://zenodo.org/record/7294916

    The simulation process of this dataset involves two processes. The first is to simulate one brain under different simulated scanning sequences. For this, we use BrainWeb https://brainweb.bic.mni.mcgill.ca/cgi/bw/submit_request. In the custom setting, we use spin-echo and apply image artifact the same as the default setting of this page. The second process is to transform each simulated brain from BrainWeb to different anatomical shapes. We use Human Connectome Project (HCP) 1200 subject data https://www.humanconnectome.org/study/hcp-young-adult and randomly select 500 brains as anatomical references.

    Other details of this dataset can be found at https://www.frontiersin.org/articles/10.3389/fnimg.2022.1012639/full where the details of the data construction are discussed.

    All parts of the whole dataset can be found at:

    Part 1: https://zenodo.org/record/7294916

    Part 2: https://zenodo.org/record/7389550

    Part 3: https://zenodo.org/record/7390382

    Part 4: https://zenodo.org/record/7390741

    Part 5: https://zenodo.org/record/7391205

    Part 6: https://zenodo.org/record/7393060

    Part 7: https://zenodo.org/record/7393174

    Part 8: https://zenodo.org/record/7393347

    Part 9: https://zenodo.org/record/7394250

    Part 10: https://zenodo.org/record/7394667

    Part 11: https://zenodo.org/record/7394939

    Part 12: https://zenodo.org/record/7395031

    Part 13: https://zenodo.org/record/7395620

    Part 14: https://zenodo.org/record/7395622

  7. brainExtractionBrainWeb20.h5

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    hdf
    Updated Oct 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Tustison (2024). brainExtractionBrainWeb20.h5 [Dataset]. http://doi.org/10.6084/m9.figshare.27284955.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Nick Tustison
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    brain web 20 brain extraction

  8. Finansijski podaci za BrainWeb d.o.o.

    • companywall.rs
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agencija za privredne registre - APR, Finansijski podaci za BrainWeb d.o.o. [Dataset]. https://www.companywall.rs/firma/brainweb-doo/MMx1ORcR0
    Explore at:
    Dataset provided by
    Агенција за привредне регистре
    Authors
    Agencija za privredne registre - APR
    License

    http://www.companywall.rs/Home/Licencehttp://www.companywall.rs/Home/Licence

    Description

    Ovaj skup podataka uključuje finansijske izvještaje, račune i blokade, te nekretnine. Podaci uključuju prihode, rashode, dobit, imovinu, obaveze i informacije o nekretninama u vlasništvu kompanije. Finansijski podaci, finansijski sažetak, sažetak kompanije, preduzetnik, zanatlija, udruženje, poslovni subjekti.

  9. w

    Creative-Brain-Web (Company) - Reverse Whois Lookup

    • whoisdatacenter.com
    csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, Creative-Brain-Web (Company) - Reverse Whois Lookup [Dataset]. https://whoisdatacenter.com/company/Creative-Brain-Web/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Nov 20, 2025
    Description

    Uncover historical ownership history and changes over time by performing a reverse Whois lookup for the company Creative-Brain-Web.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). BrainWeb - Simulated Brain Database [Dataset]. http://identifiers.org/RRID:SCR_003263

BrainWeb - Simulated Brain Database

RRID:SCR_003263, nif-0000-00020, BrainWeb - Simulated Brain Database (RRID:SCR_003263), BrainWeb, BainWeb SBD, BrainWeb Simulated Brain Database

Explore at:
Dataset updated
Jan 29, 2022
Description

Database of human brain images derived from a realistic phantom and generated using a sophisticated MRI simulator. Custom simulations may be generated to match a user's selected parameters. The goal is to aid validation of computer-aided quantitative analysis of medical image data. The SBD contains a set of realistic MRI data volumes produced by an MRI simulator. These data can be used by the neuroimaging community to evaluate the performance of various image analysis methods in a setting where the truth is known. The SBD contains simulated brain MRI data based on two anatomical models: normal and multiple sclerosis (MS). For both of these, full 3-dimensional data volumes have been simulated using three sequences (T1-, T2-, and proton-density- (PD-) weighted) and a variety of slice thicknesses, noise levels, and levels of intensity non-uniformity. These data are available for viewing in three orthogonal views (transversal, sagittal, and coronal), and for downloading.

Search
Clear search
Close search
Google apps
Main menu