During the third quarter of 2024, data breaches exposed more than 422 million records worldwide. Since the first quarter of 2020, the highest number of data records were exposed in the first quarter of 202, more than 818 million data sets. Data breaches remain among the biggest concerns of company leaders worldwide. The most common causes of sensitive information loss were operating system vulnerabilities on endpoint devices. Which industries see the most data breaches? Meanwhile, certain conditions make some industry sectors more prone to data breaches than others. According to the latest observations, the public administration experienced the highest number of data breaches between 2021 and 2022. The industry saw 495 reported data breach incidents with confirmed data loss. The second were financial institutions, with 421 data breach cases, followed by healthcare providers. Data breach cost Data breach incidents have various consequences, the most common impact being financial losses and business disruptions. As of 2023, the average data breach cost across businesses worldwide was 4.45 million U.S. dollars. Meanwhile, a leaked data record cost about 165 U.S. dollars. The United States saw the highest average breach cost globally, at 9.48 million U.S. dollars.
In 2023, the number of data compromises in the United States stood at 3,205 cases. Meanwhile, over 353 million individuals were affected in the same year by data compromises, including data breaches, leakage, and exposure. While these are three different events, they have one thing in common. As a result of all three incidents, the sensitive data is accessed by an unauthorized threat actor. Industries most vulnerable to data breaches Some industry sectors usually see more significant cases of private data violations than others. This is determined by the type and volume of the personal information organizations of these sectors store. In 2022, healthcare, financial services, and manufacturing were the three industry sectors that recorded most data breaches. The number of healthcare data breaches in the United States has gradually increased within the past few years. In the financial sector, data compromises increased almost twice between 2020 and 2022, while manufacturing saw an increase of more than three times in data compromise incidents. Largest data exposures worldwide In 2020, an adult streaming website, CAM4, experienced a leakage of nearly 11 billion records. This, by far, is the most extensive reported data leakage. This case, though, is unique because cyber security researchers found the vulnerability before the cyber criminals. The second-largest data breach is the Yahoo data breach, dating back to 2013. The company first reported about one billion exposed records, then later, in 2017, came up with an updated number of leaked records, which was three billion. In March 2018, the third biggest data breach happened, involving India’s national identification database Aadhaar. As a result of this incident, over 1.1 billion records were exposed.
The largest reported data leakage as of January 2024 was the Cam4 data breach in March 2020, which exposed more than 10 billion data records. The second-largest data breach in history so far, the Yahoo data breach, occurred in 2013. The company initially reported about one billion exposed data records, but after an investigation, the company updated the number, revealing that three billion accounts were affected. The National Public Data Breach was announced in August 2024. The incident became public when personally identifiable information of individuals became available for sale on the dark web. Overall, the security professionals estimate the leakage of nearly three billion personal records. The next significant data leakage was the March 2018 security breach of India's national ID database, Aadhaar, with over 1.1 billion records exposed. This included biometric information such as identification numbers and fingerprint scans, which could be used to open bank accounts and receive financial aid, among other government services.
Cybercrime - the dark side of digitalization As the world continues its journey into the digital age, corporations and governments across the globe have been increasing their reliance on technology to collect, analyze and store personal data. This, in turn, has led to a rise in the number of cyber crimes, ranging from minor breaches to global-scale attacks impacting billions of users – such as in the case of Yahoo. Within the U.S. alone, 1802 cases of data compromise were reported in 2022. This was a marked increase from the 447 cases reported a decade prior. The high price of data protection As of 2022, the average cost of a single data breach across all industries worldwide stood at around 4.35 million U.S. dollars. This was found to be most costly in the healthcare sector, with each leak reported to have cost the affected party a hefty 10.1 million U.S. dollars. The financial segment followed closely behind. Here, each breach resulted in a loss of approximately 6 million U.S. dollars - 1.5 million more than the global average.
View Data Breach Notification Reports, which include how many breaches are reported each year and the number of affected residents.
As of 2024, the average cost of a data breach in the United States amounted to 9.36 million U.S. dollars, down from 9.48 million U.S. dollars in the previous year. The global average cost per data breach was 4.88 million U.S. dollars in 2024. Cost of a data breach in different countries worldwide Data breaches impose a big threat for organizations globally. The monetary damage caused by data breaches has increased in many markets in the past decade. In 2023, Canada followed the U.S. by data breach costs, with an average of 5.13 million U.S. dollars. Since 2019, the average monetary damage caused by loss of sensitive information in Canada has increased notably. In the United Kingdom, the average cost of a data breach in 2024 amounted to around 4.53 million U.S. dollars, while in Germany it stood at 5.31 million U.S. dollars. The cost of data breach by industry and segment Data breach costs vary depending on the industry and segment. For the fourth consecutive year, the global healthcare sector registered the highest costs of data breach, which in 2024 amounted to about nine million U.S. dollars. Financial institutions ranked second, with an average cost of six million U.S. dollars for a data breach. Detection and escalation was the costliest segment in data breaches worldwide, with 1.63 U.S. dollars on average. The cost for lost business ranked second, while response following a breach came across as the third-costliest segment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data breaches cost companies and businesses a lot of money. The average cost of a data breach is $3.86 million.
Customers' personal identifiable information was the most common type of data compromised in worldwide data breaches. 48 percent of compromised records fell into this category in 2024. The second-most breached kind of data was employee personal identifiable information, with around 37 percent of all breached records in the same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average cyber attack takes 280 days to identify and contain and it costs an average of about $3.86 million to deal with properly.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of breaches applications for social work orders by order type.
Between January and November 2023, California was the U.S. state with the highest number of reported data breach incidents targeting the government. In the measured period, the government agencies saw 16 cases of data breaches. Texas ranked second, with eight incidents. Overall, 137 cases of government data breaches were recorded in the United States.
Between May 2018 and September 2024, France saw eight incidents of significant data breaches. The first recorded case was the May 2018 data breach at Apollo.io. The marketing company based in San Francisco lost approximately 10.93 million data records from French users. The latest reported data breach incident occurred at the France-based security company Thales. As a result of this incident, 9.5 GB of archive files were leaked.
As of January 2025, the most significant data privacy violation fine worldwide was for social media giant Meta. In May 2023, the Data Protection Commission (DPC) of Ireland decided to fine the company with 1.2 billion euros or 1.3 billion U.S. dollars. The Chinese vehicle-for rent company Didi Global ranked second. In July 2022, China's data privacy regulator fined the company 8.026 billion Chinese yuan, or 1.19 billion U.S. dollars. The 2021 Amazon fine issued by Luxembourg's data privacy regulation authorities was 877 million U.S. dollars and was the third-biggest data breach fine as of the measured month. The 2019 fine of 575 million U.S. dollars to Equifax followed. In this incident, because of unpatched vulnerabilities, nearly 150 million people were affected, which caused the American consumer credit reporting agency to pay at least 575 million U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction This dataset records all curtailment events experienced by curtailable-connection customers. About Curtailment When a generation customer requests a firm connection under a congested part of our network, there may be a requirement to reinforce the network to accommodate the connection. The reinforcement works take time to complete which increases the lead time to connect for the customer. Furthermore, the customer may need to contribute to the cost of the reinforcement works.UK Power Networks offers curtailable-connections as an alternative solution for our customers. It allows customers to connect to the distribution network as soon as possible rather than waiting, and potentially paying, for network reinforcement. This is possible because under a curtailable connection, the customer agrees that their access to the network can be controlled when congestion is high. These fast-tracked curtailable-connections can transition to firm connections once the reinforcement activity has taken place. Curtailable connections have enabled faster and cheaper connection of renewable energy generation to the distribution network owned and operated by UK Power Networks.The Distribution System Operator (DSO) team has developed the Distributed Energy Resource Management System (DERMS) that monitors curtailable-connection generators as well as associated constraints on the network. When a constraint reaches a critical threshold, an export access reduction signal may be sent to generators associated with that constraint so that the network can be kept safe, secure, and reliable.This dataset contains a record of curtailment actions we have taken and the resultant access reduction experienced by our curtailment-connections customers. Access reduction is calculated as the MW access reduction from maximum × duration of access reduction in hours (MW×h). The dataset categorises curtailment actions into 2 categories: Constraint-driven curtailment: when a constraint is breached, we aggregate the access reduction of all customers associated with that constraint. A constraint breach occurs when the network load exceeds the safe limit. Non-constraint driven curtailment: this covers all curtailment which is not directly related to a constraint breach on the network. It includes customer comms failures, non-compliance trips (where the customer has not complied with a curtailment instruction), planned outages and unplanned outages Each row in the dataset details the start and end times, durations and customer access reduction associated with a curtailment actions. We also provide the associated grid supply point (GSP) and nominal voltage to provide greater aggregation capabilities. By virtue of being able to track curtailment across our network in granular detail, we have managed to significantly reduce curtailment of our curtailable-connections customers. Methodological Approach A Remote Terminal Unit (RTU) is installed at each curtailable-connection site providing live telemetry data into the DERMS. It measures communications status, generator output and mode of operation. RTUs are also installed at constraint locations (physical parts of the network, e.g., transformers, cables which may become overloaded under certain conditions). These are identified through planning power load studies. These RTUs monitor current at the constraint and communications status. The DERMS design integrates network topology information. This maps constraints to associated curtailable connections under different network running conditions, including the sensitivity of the constraints to each curtailable connection. In general, a 1MW reduction in generation of a customer will cause <1MW reduction at the constraint. Each constraint is registered to a GSP.DERMS monitors constraints against the associated breach limit. When a constraint limit is breached, DERMS calculates the amount of access reduction required from curtailable connections linked to the constraint to alleviate the breach. This calculation factors in the real-time level of generation of each customer and the sensitivity of the constraint to each generator. Access reduction is issued to each curtailable-connection via the RTU until the constraint limit breach is mitigated. Multiple constraints can apply to a curtailable-connection and constraint breaches can occur simultaneously. Where multiple constraint breaches act upon a single curtailable-connection, we apportion the access reduction of that connection to the constraint breaches depending on the relative magnitude of the breaches. Where customer curtailment occurs without any associated constraint breach, we categorise the curtailment as non-constraint driven. Future developments will include the reason for non-constraint driven curtailment. Quality Control Statement The dataset is derived from data recorded by RTUs located at customer sites and constraint locations across our network. UKPN’s Ops Telecoms team monitors and maintains these RTUs to ensure they are providing accurate customer/network data. An alarms system notifies the team of communications failures which are attended to by our engineers as quickly as possible. RTUs can store telemetry data for prolonged periods during communications outages and then transmit data once communications are reinstated. These measures ensure we have a continuous stream of accurate data with minimal gaps. On the rare instances where there are issues with the raw data received from DERMS, we employ simple data cleaning algorithms such as forward filling. RTU measurements of access reduction update on change or every 30-mins in absence of change. We also minimise postprocessing of RTU data (e.g. we do not time average data). Using the raw data allows us to ascertain event start and end times of curtailment actions exactly and accurately determine access reductions experienced by our customers. Assurance Statement The dataset is generated and updated by a script which is scheduled to run daily. The script was developed by the DSO Data Science team in conjunction with the DSO Network Access team, the DSO Operations team and the UKPN Ops Telecoms team to ensure correct interpretation of the RTU data streams. The underlying script logic has been cross-referenced with the developers and maintainers of the DERMS scheme to ensure that the data reflects how DERMS operates. The outputs of the script were independently checked by the DSO Network Access team for accuracy of the curtailment event timings and access reduction prior to first publication on the Open Data Portal (ODP). The DSO Operations team conduct an ongoing review of the data as it is updated daily to verify that the operational expectations are reflected in the data. The Data Science team have implemented automated logging which notifies the team of any issues when the script runs. This allows the Data Science to investigate and debug any errors/warnings as soon as they happen.
Other
Download dataset information: Metadata (JSON)
Definitions of key terms related to this dataset can be found in the Open Data Portal Glossary: https://ukpowernetworks.opendatasoft.com/pages/glossary/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Some industries are affected by cyber attacks more than others. These next cybersecurity statistics detail specifically who is affected by cyber-attacks and why they are.
As of 2024, the average cost per stolen record in data breaches worldwide amounted to 169 U.S. dollars, up from 165 dollars in the previous year. The average cost of a data breach worldwide was 4.88 million U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pay attention to the following cybersecurity statistics to learn how to protect yourself from attacks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Did the COVID-19 pandemic really affect cybersecurity? Short answer – Yes. Cybercrime is up 600% due to COVID-19.
In 2023, around 96.75 million e-mail accounts breached originated from the United States, making it the country with the most significant number of user account exposures in the examined year. Russia ranked second, with over 78 million accounts breached, while the France followed, with approximately 10.5 million breached accounts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction Generation customers connected to UK Power Networks can be subjected to curtailment through our Distributed Energy Resource Management System (DERMS) if they accepted a curtailable-connection. During periods of network congestion, these DERS will have their access reduced to mitigate network constraint breaches. Their reduction is organised according to their connection application date in a last-in first-out (LIFO) arrangement. The Constraints Real Time Meter Readings dataset on the Open Data Portal (ODP) gives a near real time status of the constraints on our network that are used by DERMS to reduce access. This API accessible dataset can be used to see just how congested the network is, and for the specific DER operators themselves, they have access and visibility to the constraints of their specific site. The dataset contains a timestamp, the constraint identifier, the most recent current reading in amps, the trim and release limits (curtailment starts at the trim and ends at the release), whether the site is in breach, a description of the constraint, and (only if you have access) the name of the DER. The dataset updates as close to real time as is possible. Our scheduling is as follows:
At 15s past the minute mark, we scrape the network data and push it to the ODP server On the minute mark, the ODP runs an update to refresh the dataset The dataset refresh is completed between 5-15s past the minute mark Only after this refresh has completed can you get the latest values from the ODP
You can run this notebook to see the dataset in action: https://colab.research.google.com/drive/1Czx98U6zttlA3PC2OfI_0UzAbE48BvEq?usp=sharing
Methodological Approach
A Remote Terminal Unit (RTU) is installed at each curtailable-connection site providing live telemetry data into the DERMS. It measures communications status, generator output, and mode of operation. RTUs are also installed at constraint locations (physical parts of the network, e.g., transformers, cables which may become overloaded under certain conditions). These are identified through planning power load studies. These RTUs monitor current at the constraint and communications status. The DERMS design integrates network topology information. This maps constraints to associated curtailable connections under different network running conditions, including the sensitivity of the constraints to each curtailable connection. In general, a 1MW reduction in generation of a customer will cause <1MW reduction at the constraint. Each constraint is registered to a GSP. DERMS monitors constraints against the associated breach limit. When a constraint limit is breached, DERMS calculates the amount of access reduction required from curtailable connections linked to the constraint to alleviate the breach. This calculation factors in the real-time level of generation of each customer and the sensitivity of the constraint to each generator. Access reduction is issued to each curtailable-connection via the RTU until the constraint limit breach is mitigated. Multiple constraints can apply to a curtailable-connection and constraint breaches can occur simultaneously. Where multiple constraint breaches act upon a single curtailable-connection, we apportion the access reduction of that connection to the constraint breaches depending on the relative magnitude of the breaches. Where customer curtailment occurs without any associated constraint breach, we categorize the curtailment as non-constraint driven. Future developments will include the reason for non-constraint driven curtailment.
Quality Control Statement Quality Control Measures include:
Manual review and correction of data inconsistencies. Use of additional verification steps to ensure accuracy in the methodology.
Assurance Statement The DSO Data Science Team checked to ensure data accuracy and consistency.
Other Download dataset information: Metadata (JSON) Definitions of key terms related to this dataset can be found in the Open Data Portal Glossary: https://ukpowernetworks.opendatasoft.com/pages/glossary/
During the third quarter of 2024, data breaches exposed more than 422 million records worldwide. Since the first quarter of 2020, the highest number of data records were exposed in the first quarter of 202, more than 818 million data sets. Data breaches remain among the biggest concerns of company leaders worldwide. The most common causes of sensitive information loss were operating system vulnerabilities on endpoint devices. Which industries see the most data breaches? Meanwhile, certain conditions make some industry sectors more prone to data breaches than others. According to the latest observations, the public administration experienced the highest number of data breaches between 2021 and 2022. The industry saw 495 reported data breach incidents with confirmed data loss. The second were financial institutions, with 421 data breach cases, followed by healthcare providers. Data breach cost Data breach incidents have various consequences, the most common impact being financial losses and business disruptions. As of 2023, the average data breach cost across businesses worldwide was 4.45 million U.S. dollars. Meanwhile, a leaked data record cost about 165 U.S. dollars. The United States saw the highest average breach cost globally, at 9.48 million U.S. dollars.