https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The no-code web scraping tool market is experiencing robust growth, driven by the increasing demand for automated data extraction across diverse sectors. The market's expansion is fueled by several key factors. Firstly, the rise of e-commerce and the need for competitive pricing intelligence necessitates efficient data collection. Secondly, the travel and hospitality industries leverage web scraping for dynamic pricing and competitor analysis. Thirdly, academic research, finance, and human resources departments utilize these tools for large-scale data analysis and trend identification. The ease of use offered by no-code platforms democratizes web scraping, eliminating the need for coding expertise, and significantly accelerating the data acquisition process. This accessibility attracts a wider user base, contributing to market expansion. The market is segmented by application (e-commerce, travel & hospitality, academic research, finance, human resources, and others) and type (text-based, cloud-based, and API-based web scrapers). While the market is competitive, with numerous players offering varying functionalities and pricing models, the continued growth in data-driven decision-making across industries assures continued expansion. Cloud-based solutions are expected to dominate due to scalability and ease of access. Future growth hinges on the development of more sophisticated no-code platforms offering enhanced features such as AI-powered data cleaning and intelligent data analysis capabilities. Geographic regions like North America and Europe currently hold significant market share, but Asia-Pacific is poised for substantial growth due to increasing digital adoption and expanding e-commerce markets. The historical period (2019-2024) likely witnessed a moderate growth rate, setting the stage for the accelerated expansion projected for the forecast period (2025-2033). Assuming a conservative CAGR of 15% for the historical period, resulting in a 2024 market size of approximately $500 million, and applying a slightly higher CAGR of 20% for the forecast period, reflects the increasing adoption and sophistication of these tools. Factors such as stringent data privacy regulations and the increasing sophistication of anti-scraping measures present potential restraints, but innovative solutions are emerging to address these challenges, including ethical data sourcing and advanced proxy management features. The ongoing integration of AI and machine learning capabilities into no-code platforms is also expected to propel market growth, enabling more sophisticated data extraction and analysis with minimal user input.
https://brightdata.com/licensehttps://brightdata.com/license
Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Zpid
City
State
Home Status
Street Address
Zipcode
Home Type
Living Area Value
Bedrooms
Bathrooms
Price
Property Type
Date Sold
Annual Homeowners Insurance
Price Per Square Foot
Rent Zestimate
Tax Assessed Value
Zestimate
Home Values
Lot Area
Lot Area Unit
Living Area
Living Area Units
Property Tax Rate
Page View Count
Favorite Count
Time On Zillow
Time Zone
Abbreviated Address
Brokerage Name
And much more
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for "BrightData/Wikipedia-Articles"
Dataset Summary
Explore a collection of millions of Wikipedia articles with the Wikipedia dataset, comprising over 1.23M structured records and 10 data fields updated and refreshed regularly. Each entry includes all major data points such as timestamp, URLs, article titles, raw and cataloged text, images, "see also" references, external links, and a structured table of contents. For a complete list of data points, please… See the full description on the dataset page: https://huggingface.co/datasets/BrightData/Wikipedia-Articles.
Eximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
https://brightdata.com/licensehttps://brightdata.com/license
Our travel datasets provide extensive, structured data covering various aspects of the global travel and hospitality industry. These datasets are ideal for businesses, analysts, and developers looking to gain insights into hotel pricing, short-term rentals, restaurant listings, and travel trends. Whether you're optimizing pricing strategies, analyzing market trends, or enhancing travel-related applications, our datasets offer the depth and accuracy you need.
Key Travel Datasets Available:
Hotel & Rental Listings: Access detailed data on hotel properties, short-term rentals, and vacation stays from platforms like
Airbnb, Booking.com, and other OTAs. This includes property details, pricing, availability, guest reviews, and amenities.
Real-Time & Historical Pricing Data: Track hotel room pricing, rental occupancy rates, and pricing trends
to optimize revenue management and competitive analysis.
Restaurant Listings & Reviews: Explore restaurant data from Tripadvisor, OpenTable, Zomato, Deliveroo, and Talabat,
including restaurant details, customer ratings, menus, and delivery availability.
Market & Trend Analysis: Use structured datasets to analyze travel demand, seasonal trends, and consumer preferences
across different regions.
Geo-Targeted Data: Get location-specific insights with city, state, and country-level segmentation,
allowing for precise market research and localized business strategies.
Use Cases for Travel Datasets:
Dynamic Pricing & Revenue Optimization: Adjust pricing strategies based on real-time market trends and competitor analysis.
Market Research & Competitive Intelligence: Identify emerging travel trends, monitor competitor performance, and assess market demand.
Travel & Hospitality App Development: Enhance travel platforms with accurate, up-to-date data on hotels, restaurants, and rental properties.
Investment & Financial Analysis: Evaluate travel industry performance for investment decisions and economic forecasting.
Our travel datasets are available in multiple formats (JSON, CSV, Excel) and can be delivered via
API, cloud storage (AWS, Google Cloud, Azure), or direct download.
Stay ahead in the travel industry with high-quality, structured data that powers smarter decisions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BRIGHT is the first open-access, globally distributed, event-diverse multimodal dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries. About 4,500 paired optical and SAR images containing over 350,000 building instances in BRIGHT, with a spatial resolution between 0.3 and 1 meters, provides detailed representations of individual buildings, making it ideal for precise damage assessment.
BRIGHT also serves as the official dataset of IEEE GRSS DFC 2025 Track II.
Please download dfc25_track2_trainval.zip and unzip it. It contains training images & labels and validation images.
Benchmark code related to the DFC 2025 can be found at this Github repo.
The official leaderboard is located on the Codalab-DFC2025-Track II page.
Details of BRIGHT can be refer to our paper.
If BRIGHT is useful to research, please kindly consider cite our paper
@article{chen2025bright,
title={BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response},
author={Hongruixuan Chen and Jian Song and Olivier Dietrich and Clifford Broni-Bediako and Weihao Xuan and Junjue Wang and Xinlei Shao and Yimin Wei and Junshi Xia and Cuiling Lan and Konrad Schindler and Naoto Yokoya},
journal={arXiv preprint arXiv:2501.06019},
year={2025},
url={https://arxiv.org/abs/2501.06019},
}
Label data of BRIGHT are provided under the same license as the optical images, which varies with different events.
With the exception of two events, Hawaii-wildfire-2023 and La Palma-volcano eruption-2021, all optical images are from Maxar Open Data Program, following CC-BY-NC-4.0 license. The optical images related to Hawaii-wildifire-2023 are from High-Resolution Orthoimagery project of NOAA Office for Coastal Management. The optical images related to La Palma-volcano eruption-2021 are from IGN (Spain) following CC-BY 4.0 license.
The SAR images of BRIGHT is provided by Capella Open Data Gallery and Umbra Space Open Data Program, following CC-BY-4.0 license.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
https://brightdata.com/licensehttps://brightdata.com/license
Our TikTok Influencer Dataset provides comprehensive insights into influencer profiles, audience engagement, and market impact. This dataset is ideal for brands, marketers, and researchers looking to identify top-performing influencers, analyze engagement metrics, and optimize influencer marketing strategies on TikTok.
Key Features:
Influencer Profiles: Access detailed influencer data, including profile name, bio, profile picture, and direct profile URL.
Follower & Engagement Metrics: Track key performance indicators such as follower count, engagement rate, and interaction levels.
Monetization Insights: Analyze influencer earnings with Gross Merchandise Value (GMV) and currency details.
Category & Niche Segmentation: Identify influencers based on their associated product categories to match brand campaigns with relevant audiences.
Contact Information: Retrieve available influencer email addresses for direct outreach and collaboration.
Use Cases:
Influencer Discovery & Marketing: Find high-performing TikTok influencers for brand partnerships and sponsored campaigns.
Competitive Analysis: Compare influencer engagement rates and audience reach to optimize marketing strategies.
Market Research & Trend Analysis: Identify emerging influencers and track content trends within different product categories.
Performance Benchmarking: Evaluate influencer success based on GMV, engagement rate, and follower growth.
Lead Generation & Outreach: Use available contact details to connect with influencers for collaborations and brand promotions.
Our TikTok Influencer Dataset is available in multiple formats (JSON, CSV, Excel) and can be delivered via
API, cloud storage (AWS, Google Cloud, Azure), or direct download.
Gain valuable insights into the TikTok influencer landscape and enhance your marketing strategies with high-quality, structured data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
14 Global import shipment records of Bright Raw And HSN Code 5403 with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
4911 Global import shipment records of Bright Led with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
299 Global import shipment records of Steel Bright Bar And HSN Code 72222012 with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1817 Global export shipment records of Bright Bar And HSN Code 7228 with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
17625 Global import shipment records of Steel Bright And HSN Code 7215 with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
70 Global import shipment records of Sumica Bright Gold And HSN Code 32061900 with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The no-code web scraping tool market is experiencing robust growth, driven by the increasing demand for automated data extraction across diverse sectors. The market's expansion is fueled by several key factors. Firstly, the rise of e-commerce and the need for competitive pricing intelligence necessitates efficient data collection. Secondly, the travel and hospitality industries leverage web scraping for dynamic pricing and competitor analysis. Thirdly, academic research, finance, and human resources departments utilize these tools for large-scale data analysis and trend identification. The ease of use offered by no-code platforms democratizes web scraping, eliminating the need for coding expertise, and significantly accelerating the data acquisition process. This accessibility attracts a wider user base, contributing to market expansion. The market is segmented by application (e-commerce, travel & hospitality, academic research, finance, human resources, and others) and type (text-based, cloud-based, and API-based web scrapers). While the market is competitive, with numerous players offering varying functionalities and pricing models, the continued growth in data-driven decision-making across industries assures continued expansion. Cloud-based solutions are expected to dominate due to scalability and ease of access. Future growth hinges on the development of more sophisticated no-code platforms offering enhanced features such as AI-powered data cleaning and intelligent data analysis capabilities. Geographic regions like North America and Europe currently hold significant market share, but Asia-Pacific is poised for substantial growth due to increasing digital adoption and expanding e-commerce markets. The historical period (2019-2024) likely witnessed a moderate growth rate, setting the stage for the accelerated expansion projected for the forecast period (2025-2033). Assuming a conservative CAGR of 15% for the historical period, resulting in a 2024 market size of approximately $500 million, and applying a slightly higher CAGR of 20% for the forecast period, reflects the increasing adoption and sophistication of these tools. Factors such as stringent data privacy regulations and the increasing sophistication of anti-scraping measures present potential restraints, but innovative solutions are emerging to address these challenges, including ethical data sourcing and advanced proxy management features. The ongoing integration of AI and machine learning capabilities into no-code platforms is also expected to propel market growth, enabling more sophisticated data extraction and analysis with minimal user input.