Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573Metadata and Downloads
Downloadable GIS data about various basin fields.
Website states: " This website report brings together abundant current and existing datasets and concepts in a common and integrated format to advance our understanding of the distribution, geologic framework, burial history, and geochemical character of the basin's oil, gas, and coal resources. Among the anticipated benefits of these digital data layers are improvements in: 1) resource assessment estimates and methodology, 2) exploration strategy, 3) basin models, and 4) energy use policies."
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 9 of the Atlas, Middle Ordovician to Lower Devonian Strata of the Western Canada Sedimentary Basin, Figure 22, Ordovician-Silurian Subcrop/Outcrop Williston Basin. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups include: new/revised datasets (paleo-geothermal features, geochemistry, geophysics, heat flow, slip and dilation, potential structures, geothermal power plants, positive and negative test sites), machine learning model input grids, machine learning models (Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk) - supervised and unsupervised), original NV Play Fairway data and models, and NV cultural/reference data.
See layer descriptions for additional metadata. Smaller GIS resource packages (by category) can be found in the related datasets section of this submission. A submission linking the full codebase for generating machine learning output models is available through the "Related Datasets" link on this page, and contains results beyond the top picks present in this compilation.
This data set includes ArcInfo-formatted maps of the Kuparuk River Basin Region of the Alaskan North Slope (at 1:250,000 scale) and five subset study areas: the Upper Kuparuk River Basin Subregion (1:25,000), the Imnavait Creek Landscape (1:6,000), the Toolik Lake Landscape (1:5,000), the Imnavait Creek Grid (1:500), and the Toolik Lake Grid (1:500). Land cover (satellite-derived) and elevation data (USGS DEM-derived) are provided for the Kuparuk River Basin Region. For the five subset areas, an integrated terrain unit mapping (ITUM) approach simultaneously mapped vegetation and other terrain features as interpreted in the field from a common aerial-photograph base. The result is a single ITUM map for each area, including vegetation, geomorphology, glacial geology, and many other features. Various supplemental maps (e.g., hydrologic features and roads) for each of the areas are available for use as overlays.
The Georgina Basin Geoscience Data Package is a geospatial data compilation for the Georgina Basin, with a focus on the southern part of the basin. The data set includes three components: an ARC-GIS package (that includes geochemistry, biostratigraphy, formation top picks, hydrocarbon shows, XRD data, ICPMS data, SEM-EDX data, geomechanics data, well header information, Geoscience Australia maps, map products and geophysics), a seismic data compilation (incorporating existing publicly-available seismic data from the southern Georgina Basin, and a well folio (summarising in graphic form the key stratigraphic, geochemical, biostratigraphic, hydrocarbon shows, wireline log, porosity, permeability and HyLogger data for 29 wells in the southern Georgina Basin). The data package has been put together to assist explorers in understanding the conventional and unconventional hydrocarbon potential of the Georgina Basin.
http://open.alberta.ca/licencehttp://open.alberta.ca/licence
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 12 of the Atlas, Devonian Woodbend-Winterburn Strata of the Western Canada Sedimentary Basin, Figure 22d, Evolution of Woodbend Basin Fill. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Yearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Valles Calders, upper part of the Jemez River basin by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 7 of the Atlas, Paleographic Evolution of the Cratonic Platform - Cambrian to Triassic, Figure 13, Permian (PT1) Paleogeography. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 15 of the Atlas, Permian Strata of the Western Canada Sedimentary Basin, Figure 16, Permian Lithology: Carbonate. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
The California State Water Resources Control Board is currently in the process of improving the functionality and accessibility of information residing in their Water Quality Control Plans (aka Basin Plans). In order to achieve this, the data (i.e. statewide water quality objectives, beneficial uses, applicable TMDLs, etc.), are being transferred to a standardized digital format and linked to applicable surface water features. This dataset is limited to the beneficial uses data, while the water quality objectives, applicable TMDLs, etc. will be released at a later date. Data formats will include GIS data layers and numerous nonspatial data tables. The GIS layers contain hydrography features derived from a 2012 snapshot of the high-resolution (1:24000 scale) National Hydrography Dataset with added attribution. Nonspatial tables will contain various textual and numeric data from the Regional Basin and State Plans. The extent of the dataset covers the state of California and the non-spatial tables reflect the information and elements from the various plans used up to 2020. The GIS layers and associated attribution will enable the future integration of the various elements of the Basin Plans to ensure that all applicable Basin Plan requirements for a particular waterbody can be determined in a quick and precise manner across different modern mediums. The data are being managed and the project implemented by State and Regional Water Board staff using ESRI's ArcGIS Server and ArcSDE technology.
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 13 of the Atlas, Devonian Wabamun Group of the Western Canada Sedimentary Basin, Figure 12, Net Pellets Isopach - Upper Stettler Fm. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
The California State Water Resources Control Board is currently in the process of improving the functionality and accessibility of information residing in their Water Quality Control Plans (aka Basin Plans). In order to achieve this, the data (i.e. statewide water quality objectives, beneficial uses, applicable TMDLs, etc.), are being transferred to a standardized digital format and linked to applicable surface water features. This dataset is limited to the beneficial uses data, while the water quality objectives, applicable TMDLs, etc. will be released at a later date. Data formats will include GIS data layers and numerous nonspatial data tables. The GIS layers contain hydrography features derived from a 2012 snapshot of the high-resolution (1:24000 scale) National Hydrography Dataset with added attribution. Nonspatial tables will contain various textual and numeric data from the Regional Basin and State Plans. The extent of the dataset covers the state of California and the non-spatial tables reflect the information and elements from the various plans used up to 2020. The GIS layers and associated attribution will enable the future integration of the various elements of the Basin Plans to ensure that all applicable Basin Plan requirements for a particular waterbody can be determined in a quick and precise manner across different modern mediums. The data are being managed and the project implemented by State and Regional Water Board staff using ESRI's ArcGIS Server and ArcSDE technology.The statewide layer is only provided as a map image layer service. The data is available as feature layer services by Regional Board extract. To view all regional board feature layer extracts go to the Basin Plan GIS Data Library Group here.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. GRBA’s spatial database and map layer was produced from high-resolution 2007 Digital Map, Inc. imagery provided to CTI by the NPS. By comparing the signatures on the imagery to field and ground data, 64 map units (48 vegetated, four barren geology and snow, and 12 land-use / land-cover) were developed and the vegetation map units were directly cross-walked or matched to their corresponding rUSNVC plant associations. The interpreted and remotely sensed data were converted to Geographic Information System (GIS) spatial geodatabases and maps were printed, field tested, reviewed, and revised.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Contains:
ISGS_geological survey of IL - This zip file includes several ArcGIS map from ISGS. Glacial boundary, Loess thickness, moraine boundary, bedrock topogrpahy, drift thickness, etc.
Soil_data_USRB_CCW - The original data is from USDA web soil survey (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). The uploaded files here are erosion factor and soil texture, which are converted from the soil survey index.
Previous measurement station - These sensor locations are previously installed inside USRB, including precipitation stations, sediment station, USGS stream station, Ameriflux tower, ISWS Stream and nutrient station, etc.
USLandcover in 2014 - Spatial and GIS Data.
GIS survey of Hydrology in USRB - This zip folder includes several files: 1. Major tributaries 2. NHD Flowlines 3. Stream order of major streams 4. Waterbody 5. Watershed boundary.
USstreams - This dataset contains the streams from NHD (USGS national map viewer) and from ISGS (major tributaries).
USBoundaries - This dataset contains county , watershed , glacial, and moraine boundaries.
This is a vector layer of Long Island's basin.The GIS layer was originally created by the GIS section in the Ministry of Environment and Natural Resource and Transport (MENRT). The layer has been re-edited since then by the Centre for GIS.
This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes all emissions associated with wells owned or operated by a single company in a specific hydrocarbon producing basin (as defined by the geologic provinces published by the American Association of Petroleum Geologists). This layer is limited to the contiguous United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This HydroShare resource contains the required GIS variables for building and running RHESSys models for any watershed with a valid gage at the Coweeta Hydrologic Laboratory. Contained in the .zip file below are custom datasets that include the gage shape file, 10m DEM, isohyet map, custom LAI map, and roads. Running RHESSys requires climate data which is also provided for the base climate station. For the purpose of demonstrating the accompanying Jupyter NoteBook, observed discharge data is included for WS18.
The associated Jupyter NoteBook resource can be dowloaded here: https://www.hydroshare.org/resource/081cbdb68415450b8ac99a5fe3092b5c/
Data Contains:
USRB_LiDAR_DEM.zip - 1.2 meter DEM of Upper Sangamon River Basin. QA/QC: Yes.
USRB_10m_DEM.zip - 10 meter DEM of Upper Sangamon River Basin. QA/QC: Yes, USRB_30m_DEM_NAD16.zip - 30 meter DEM of Upper Sangamon River Basin with NAD16 projection. QA/QC: Yes.
SRB_30m_DEM_GCS83.zip - 30 meter DEM of Upper Sangamon River Basin with GCS83 projection. QA/QC: Yes.
USDEM - This dataset contains 30m DEM, 10m DEM and LiDAR DEM (1.2m).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 30 of the Atlas, Geothermal Regime in the Western Canada Sedimentary Basin, Figure 2, Heat Generation at Precambrian Surface. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geomorphic sensitivity and ecological resilience. The target audience for this multiscale approach is managers and stakeholders interested in assessing and adaptively managing Great Basin stream systems and riparian and meadow ecosystems. Anyone interested in delineating the mountain ranges and watersheds within the Great Basin or quantifying the characteristics of the watersheds will be interested in this report. For more information, visit: https://www.fs.usda.gov/research/treesearch/61573Metadata and Downloads