36 datasets found
  1. Create buffer around features

    • lecture-with-gis-esriukeducation.hub.arcgis.com
    • teachwithgis.co.uk
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2021). Create buffer around features [Dataset]. https://lecture-with-gis-esriukeducation.hub.arcgis.com/datasets/create-buffer-around-features
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    The "Create Buffers" analysis tool in ArcGIS Online can be used to identify areas within a given distance of existing features, be those points, lines or polygons.The distance used for the buffers can either be a fixed distance from all features, or could be taken from a numerical value within each features attributes.

  2. a

    Walking Distance Quarter Mile Buffer from Libraries

    • hub.arcgis.com
    • data.pompanobeachfl.gov
    • +1more
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Broward County GIS (2020). Walking Distance Quarter Mile Buffer from Libraries [Dataset]. https://hub.arcgis.com/datasets/62261a739d8346a4a1378ccce0c97628_0
    Explore at:
    Dataset updated
    Apr 16, 2020
    Dataset authored and provided by
    Broward County GIS
    Area covered
    Description

    The layer was based on the geoprocessing buffer analysis tool. The buffer analysis was applied to libraries in Broward County. The purpose of the data is for 2020 Census planning purposes.

  3. d

    SF Bay Eelgrass 250m Buffer (BCDC 2021)

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2025). SF Bay Eelgrass 250m Buffer (BCDC 2021) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-250m-buffer-bcdc-2021-3c7b9
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This orange layer shows a 250-meter turbidity buffer of the blue 45-meter growth buffer (blue layer called "SF Bay Eelgrass 45m Buffer") adjacent to the maximum extent eelgrass survey in the San Francisco Bay. When a dredging project’s footprint overlaps with this 250-meter buffer, indirect impacts to eelgrass are assessed and best management practices are required per the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation. Methods for creating this layer are as follows: Downloaded Bay-wide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from SFEI. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the 2003, 2009, 2014, and 2019 survey data . Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent (this represents the 45-meter eelgrass buffer layer also found in this Web Application). To create the 250-meter turbidity buffer from there, the same methods were used as follows. Used Buffer tool to develop a single multipart shapefile with a 250-meter buffer from the 45-meter buffer layer. Clipped the 250-meter turbidity buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the 250-meter turbidity buffer layer resulted in fragments on land or behind levees.

  4. d

    SF Bay Eelgrass 45m Buffer (BCDC 2020)

    • catalog.data.gov
    • data.cnra.ca.gov
    • +6more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2025). SF Bay Eelgrass 45m Buffer (BCDC 2020) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-45m-buffer-bcdc-2020-ef205
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This layer is a 45-meter growth buffer surrounding the maximum extent of eelgrass (green layer called "SF Bay Eelgrass") surveyed in San Francisco Bay. Eelgrass beds are highly dynamic and the exact location and extent of eelgrass beds can change across seasons and years. Thus, the purpose of the 45-meter growth buffer, as described in the National Marine Fisheries Service's LTMS Programmatic Essential Fish Habitat consultation is to account for areas between eelgrass patches, temporal variation in bed extent, and potential bed expansion. In cases where a dredge project intersects with the 45-meter growth buffer direct impacts to eelgrass may occur and therefore assessment, minimization, and mitigation measures may be required on a project-by-project basis. A pre-dredge eelgrass area and density survey is required 30 days prior to the start of dredging and should be submitted to the LTMS permitting agencies. Methods for creating this layer are as follows: Downloaded Baywide Eelgrass Surveys for 2003, 2009, and 2014 by Merkel & Associates, Inc. (Merkel) from San Francisco Estuary Institute (SFEI) website. Obtained Richardson Bay 2019 eelgrass survey from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to NAD 1983 UTM Zone 10N. Used Buffer tool to develop a single multipart shapefile with a 45-meter buffer of the input layers. Imported the Pacific Marine and Estuarine Fish Habitat Partnership (PMEP) Estuary Extent layer and clipped the 45-meter buffer over terrestrial areas based on the PEMP Estuary Extent. Some minor adjustments were made where the buffer layer resulted in fragments on land or behind levees.

  5. a

    400 foot sidewalk buffer

    • internal-gis-hub-hendersonville.hub.arcgis.com
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The City of Hendersonville (2023). 400 foot sidewalk buffer [Dataset]. https://internal-gis-hub-hendersonville.hub.arcgis.com/datasets/400-foot-sidewalk-buffer/about
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    The City of Hendersonville
    Area covered
    Description

    Feature layer generated from running the Create Buffers analysis tool.

  6. n

    NHD 150 Foot Buffer - Mohawk River Watershed

    • opdgig.dos.ny.gov
    • new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2023). NHD 150 Foot Buffer - Mohawk River Watershed [Dataset]. https://opdgig.dos.ny.gov/datasets/572255d6a72c45709d05347957a36a49
    Explore at:
    Dataset updated
    Jan 5, 2023
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Description

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Mohawk River Watershed Processing: The original files were clipped to the Mohawk watershed. The data was re-projected to UTM 18N, NAD 83. NHDArea, NHDFlowline, NHDLine, and NHDPoint feature classes were buffered 50 feet using the Buffer Tool in ArcGIS v.10. The individual buffer files were merged and dissolved. View Dataset on the Gateway

  7. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  8. National Hydrography Dataset Plus High Resolution

    • oregonwaterdata.org
    • dangermondpreserve-tnc.hub.arcgis.com
    • +1more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://www.oregonwaterdata.org/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  9. n

    NHD 50 Foot Buffer - Mohawk River Watershed

    • opdgig.dos.ny.gov
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2023). NHD 50 Foot Buffer - Mohawk River Watershed [Dataset]. https://opdgig.dos.ny.gov/datasets/fe086cd6f5c8401ba02b1f29399a751f
    Explore at:
    Dataset updated
    Jan 5, 2023
    Dataset authored and provided by
    New York State Department of Statehttp://www.dos.ny.gov/
    Area covered
    Description

    This file contains Hydrologic Unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. The data is a seamless National representation of Hydrologic Unit Code (HUC) boundaries at HUC2 to HUC12 levels compiled from U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) and U.S. Department of Agricultural (USDA) National Resources Conservation Services (NRCS) Watershed Boundary Dataset (WBD) sources. Mohawk River Watershed Processing: The original files were clipped to the Mohawk watershed. The data was re-projected to UTM 18N, NAD 83. NHDArea, NHDFlowline, NHDLine, and NHDPoint feature classes were buffered 150 feet using the Buffer Tool in ArcGIS v.10. The individual buffer files were merged and dissolved.View Dataset on the Gateway

  10. e

    WIND TURBINE SITE ASSESSMENT

    • climat.esri.ca
    • climate.esri.ca
    Updated Jun 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BGIS_DT_F21_LiamMorrill (2022). WIND TURBINE SITE ASSESSMENT [Dataset]. https://climat.esri.ca/items/d546f590b40647c2a6b19b9a12ae198c
    Explore at:
    Dataset updated
    Jun 8, 2022
    Dataset authored and provided by
    BGIS_DT_F21_LiamMorrill
    Description

    The purpose of this project is to determine the most suitable location for a wind farm in 50Kms radius of Calgary. Different criterion need to be considered for choosing the final site, ranging from distance from settlements, water bodies, proximity to power lines to slope and wind speed intensity of the region. Based on the literature review, the areas that did not have the potential for hosting wind turbines were excluded by using the buffer tool in ArcGIS Pro. Afterwards, the wind speed and slope of the remaining regions were analyzed to pick the location with the highest wind speed and the most suitable slope. As can be seen in the final map, the final site is located in the western side of Calgary.

  11. a

    half mile greenway buffer

    • internal-gis-hub-hendersonville.hub.arcgis.com
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The City of Hendersonville (2023). half mile greenway buffer [Dataset]. https://internal-gis-hub-hendersonville.hub.arcgis.com/datasets/half-mile-greenway-buffer
    Explore at:
    Dataset updated
    Dec 12, 2023
    Dataset authored and provided by
    The City of Hendersonville
    Area covered
    Description

    Feature layer generated from running the Create Buffers analysis tool.

  12. a

    ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project...

    • hub.arcgis.com
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBAM_Org (2024). ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package [Dataset]. https://hub.arcgis.com/content/37fa42c6313e4bdb9d8a9c05d2624891
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    NBAM_Org
    Description

    The ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) Project Package includes all of the layers that are in the NTIA Permitting and Environmental Information Application as well as the APPEIT Tool which will allow users to input a project area and determine what layers from the application overlap with it. An overview of the project package and the APPEIT tool is provided below. User instructions on how to use the tool are available here. Instructions now include how to customize the tool by adding your own data. A video explaining how to use the Project Package is also available here. Project Package OverviewThis map package includes all of the layers from the NTIA Permitting and Environmental Information Application. The layers included are all feature services from various Federal and State agencies. The map package was created with ArcGIS Pro 3.4.0. The map package was created to allow users easy access to all feature services including symbology. The map package will allow users to avoid downloading datasets individually and easily incorporate into their own GIS system. The map package includes three maps.1. Permitting and Environmental Information Application Layers for GIS Analysis - This map includes all of the map tabs shown in the application, except State Data which is provided in another tab. This map includes feature services that can be used for analysis with other project layers such as a route or project area. 2. Permitting and Environmental Information Application Layers – For Reference Only - This map includes layers that cannot be used for analysis since they are either imagery or tile layers.3. State Data - Reference Only - This map includes all relevant state data that is shown in the application.The NTIA Permitting and Environmental Information Application was created to help with your permitting planning and environmental review preparation efforts by providing access to multiple maps from publicly available sources, including federal review, permitting, and resource agencies. The application should be used for informational purposes only and is intended solely to assist users with preliminary identification of areas that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements. Multiple maps are provided in the application which are created from public sources. This application does not have an exhaustive list of everything you need for permitting or environmental review for a project but is an initial starting point to see what might be required.APPEIT Tool OverviewThe Department of Commerce’s National Telecommunications and Information Administration (NTIA) is providing the ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) to help federal broadband grant recipients and subgrantees identify permits and environmental factors as they plan routes for their broadband deployments. Identifying permit requirements early, initiating pre-application coordination with permitting agencies, and avoiding environmental impacts help drive successful infrastructure projects. NTIA’s public release of the APPEIT tool supports government-wide efforts to improve permitting and explore how online and digital technologies can promote efficient environmental reviews. This Esri ArcGIS Pro tool is included in the map package and was created to support permitting, planning, and environmental review preparation efforts by providing access to data layers from publicly available sources, including federal review, permitting, and resource agencies. An SOP on how to use the tool is available here. For the full list of APPEIT layers, see Appendix Table 1 in the SOP. The tool is comprised of an ArcGIS Pro Project containing a custom ArcGIS Toolbox tool, linked web map shared by the NTIA’s National Broadband Map (NBAM), a report template, and a Tasks item to guide users through using the tool. This ArcGIS Pro project and its contents (maps and data) are consolidated into this (.ppkx) project file. To use APPEIT, users will input a project area boundary or project route line in a shapefile or feature class format. The tool will return as a CSV and PDF report that lists any federal layers from the ArcGIS Pro Permitting and Environmental Information Web Map that intersect the project. Users may only input a single project area or line at a time; multiple projects or project segments will need to be screened separately. For project route lines, users are required to specify a buffer distance. The buffer distance that is used for broadband projects should be determined by the area of anticipated impact and should generally not exceed 500 feet. For example, the State of Maryland recommends a 100-foot buffer for broadband permitting. The tool restricts buffers to two miles to ensure relevant results. DisclaimerThis document is intended solely to assist federal broadband grant recipients and subgrantees in better understanding Infrastructure Investment and Jobs Act (IIJA) broadband grant programs and the requirements set forth in the Notice of Funding Opportunity (NOFO) for this program. This document does not and is not intended to supersede, modify, or otherwise alter applicable statutory or regulatory requirements, the terms and conditions of the award, or the specific application requirements set forth in the NOFO. In all cases, statutory and regulatory mandates, the terms and conditions of the award, the requirements set forth in the NOFO, and follow-on policies and guidance, shall prevail over any inconsistencies contained in this document. NTIA’s ArcGIS Pro Permitting and Environmental Information Tool (APPEIT) should be used for informational purposes only and is intended solely to assist users with preliminary identification of broadband deployments that may require permits or planning to avoid potentially significant impacts to environmental resources subject to the National Environmental Policy Act (NEPA) and other statutory requirements. The tool is not an exhaustive or complete resource and does not and is not intended to substitute for, supersede, modify, or otherwise alter any applicable statutory or regulatory requirements, or the specific application requirements set forth in any NTIA NOFO, Terms and Conditions, or Special Award Condition. In all cases, statutory and regulatory mandates, and the requirements set forth in NTIA grant documents, shall prevail over any inconsistencies contained in these templates. The tool relies on publicly available data available on the websites of other federal, state, local, and Tribal agencies, and in some instances, private organizations and research institutions. Layers identified with a double asterisk include information relevant to determining if an “extraordinary circumstance” may warrant more detailed environmental review when a categorical exclusion may otherwise apply. While NTIA continues to make amendments to its websites to comply with Section 508, NTIA cannot ensure Section 508 compliance of federal and non-federal websites or resources users may access from links on NTIA websites. All data is presented “as is,” “as available” for informational purposes. NTIA does not warrant the accuracy, adequacy, or completeness of this information and expressly disclaims liability for any errors or omissions. Please e-mail NTIAanalytics@ntia.gov with any questions.

  13. r

    Water Supply Buffer Area

    • researchdata.edu.au
    • hub.arcgis.com
    Updated Oct 23, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Gold Coast (2018). Water Supply Buffer Area [Dataset]. https://researchdata.edu.au/water-supply-buffer-area/2996716
    Explore at:
    Dataset updated
    Oct 23, 2018
    Dataset provided by
    data.gov.au
    Authors
    City of Gold Coast
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This layer is displayed on the Water Catchments and Dual Reticulation overlay map in City Plan version 7 as 'Water Supply Buffer Area'. The layer is also available in Council’s City Plan interactive mapping tool. For further information on City Plan, please visit http://www.goldcoast.qld.gov.au/planning-and-building/city-plan-2015-19859.html

  14. Kentucky Geologic Map Information Service

    • data.lojic.org
    • hub.arcgis.com
    Updated Nov 24, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kentucky Geological Survey (2009). Kentucky Geologic Map Information Service [Dataset]. https://data.lojic.org/app/kygs::kentucky-geologic-map-information-service
    Explore at:
    Dataset updated
    Nov 24, 2009
    Dataset authored and provided by
    Kentucky Geological Survey
    Area covered
    Description

    This map service is a one-stop location to view and explore Kentucky geologic map data and related-data (geologic outcrops, photos, and diagrams), Kentucky water wells and springs, Kentucky oil and gas wells. All features are provided by the Kentucky Geological Survey via ArcGIS Server services. This map service displays the 1:500,000-scale geologic map of Kentucky at scales smaller than 1:100,000, and 1:24,000-scale geological quadrangle data at larger scales. The 1:500,000-scale geologic map data were derived from the 1988 Geologic Map of Kentucky, which was compiled by Martin C. Noger (KGS) from the 1981 Geologic Map of Kentucky (Scale 1:250,000) by McDowell and others (USGS). The 1:24,000-scale geologic map data and the fault data were compiled from 707 Geological Survey 7.5-minute geologic quadrangle maps, which were digitized during the Kentucky Geological Survey Digital Mapping Program (1996-2006).The basemap data is provided via ArcGIS Server services hosted by the Kentucky Office of Geographic Information.Some tools are provided to help explore the map data:- Query tool: use this tool to search on the KGS database of lithologic descriptions. Most descriptions are derived from the 707 1:24,000 geological quadrangle maps. Once a search is completed, every unit that contains the search parameters is highlighted on the map service.- ID tools: users can identify and get detailed info on geologic units and other map features using either the point, area, or buffer identification tools.A few notes on this service:- the legend is dynamic for the viewed extent. It is provided via a database call using the current map extent.- the oil and gas and water wells are ArcGIS Server services that update dynamically from the KGS database.- the geologic map and faults are dynamic ArcGIS Server map services.- the user can link to other geologic data for the viewed extent using the links provided in the "Geologic Info" tab.- you can query the entire KGS lithologic description database and highlight the relevant geologic units based on the query.

  15. Data from: Geospatial based model for malaria risk prediction in Kilombero...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja (2023). Geospatial based model for malaria risk prediction in Kilombero Valley, south-eastern Tanzania [Dataset]. http://doi.org/10.5061/dryad.d51c5b081
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    Ifakara Health Institutehttp://www.ihi.or.tz/
    Ardhi University
    Authors
    Stephen Mwangungulu; Emmanuel Kaindoa; Dorothea Deus; Zakaria Ngereja
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Tanzania
    Description

    Background: Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania, for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.

    Methods: This study employs a geospatial-based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. Results: The study demonstrates that the majority of the study area falls under the moderate-risk level (61%), followed by the low-risk level (31%), while the high-malaria risk area covers a small area, which occupies only 8% of the total area. Conclusion: The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions. Methods Data acquisition and description The study employed both primary and secondary data, which were collected from numerous sources based on the input required for the implementation of the predictive model. Data collected includes the locations of all public and private health centers that were downloaded free from the health portal of the United Republic of Tanzania, Ministry of Health, Community Development, Gender, Elderly, and Children, through the universal resource locator (URL) (http://moh.go.tz/hfrportal/). Human population data was collected from the 2012 population housing census (PHC) for the United Republic of Tanzania report. Rainfall data were obtained from two local offices; Kilombero Agricultural Training and Research Institute (KATRIN) and Kilombero Valley Teak Company (KVTC). These offices collect meteorological data for agricultural purposes. Monthly data from 2012 to 2017 provided from thirteen (13) weather stations. Road and stream network shapefiles were downloaded free from the MapCruzin website via URL (https://mapcruzin.com/free-tanzania-arcgis-maps-shapefiles.htm). With respect to the size of the study area, five neighboring scenes of the Landsat 8 OLI/TIRS images (path/row: 167/65, 167/66, 167/67, 168/66 and 168/67) were downloaded freely from the United States Geological Survey (USGS) website via URL: http://earthexplorer.usgs.gov. From July to November 2017, the images were selected and downloaded from the USGS Earth Explorer archive based on the lowest amount of cloud cover coverage as viewed from the archive before downloading. Finally, the digital elevation data with a spatial resolution of three arc-seconds (90m by 90m) using WGS 84 datum and the Geographic Coordinate System were downloaded free from the Shuttle Radar Topography Mission (SRTM) via URL (https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/). Only six tiles that fall in the study area were downloaded, coded tiles as S08E035, S09E035, S10E035, S08E036, S09E036, S10E036, S08E037, S09E037 and S10E037. Preparation and Creation of Model Factor Parameters Creation of Elevation Factor All six coded tiles were imported into the GIS environment for further analysis. Data management tools, with raster/raster data set/mosaic to new raster feature, were used to join the tiles and form an elevation map layer. Using the spatial analyst tool/reclassify feature, the generated elevation map was then classified into five classes as 109–358, 359–530, 531–747, 748–1017 and >1018 m.a.s.l. and new values were assigned for each class as 1, 2, 3, 4 and 5, respectively, with regards to the relationship with mosquito distribution and malaria risk. Finally, the elevation map based on malaria risk level is levelled as very high, high, moderate, low and very low respectively. Creation of Slope Factor A slope map was created from the generated elevation map layer, using a spatial analysis tool/surface/slope feature. Also, the slope raster layer was further reclassified into five subgroups based on predefined slope classes using standard classification schemes, namely quantiles as 0–0.58, 0.59–2.90, 2.91–6.40, 6.41–14.54 and >14.54. This classification scheme divides the range of attribute values into equal-sized sub-ranges, which allow specifying the number of the intervals while the system determines where the breaks should be. The reclassified slope raster layer subgroups were ranked 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence in the locality. To elaborate, the steeper slope values are related to lesser malaria hazards, and the gentler slopes are highly susceptible to malaria incidences. Finally, the slope map based on malaria risk level is leveled as very high, high, moderate, low and very low respectively. Creation of Curvature Factor Curvature is another topographical factor that was created from the generated elevation map using the spatial analysis tool/surface/curvature feature. The curvature raster layer was further reclassified into five subgroups based on predefined curvature class. The reclassified curvature raster layer subgroups were ranked to 1, 2, 3, 4 and 5 according to their degree of suitability for malaria occurrence. To explain, this affects the acceleration and deceleration of flow across the surface. A negative value indicates that the surface is upwardly convex, and flow will be decelerated, which is related to being highly susceptible to malaria incidences. A positive profile indicates that the surface is upwardly concave and the flow will be accelerated which is related to a lesser malaria hazard, while a value of zero indicates that the surface is linear and related to a moderate malaria hazard. Lastly, the curvature map based on malaria risk level is leveled as very high, high, moderate, low, and very low respectively.
    Creation of Aspect Factor As a topographic factor associated with mosquito larval habitat formation, aspect determines the amount of sunlight an area receives. The more sunlight received the stronger the influence on temperature, which may affect mosquito larval survival. The aspect of the study area also was generated from the elevation map using spatial analyst tools/ raster /surface /aspect feature. The aspect raster layer was further reclassified into five subgroups based on predefined aspect class. The reclassified aspect raster layer subgroups were ranked as 1, 2, 3, 4 and 5 according to the degree of suitability for malaria incidence, and new values were re-assigned in order of malaria hazard rating. Finally, the aspect map based on malaria risk level is leveled as very high, high, moderate, low, and very low, respectively. Creation of Human Population Distribution Factor Human population data was used to generate a population distribution map related to malaria occurrence. Kilombero Valley has a total of 42 wards, the data was organized in Ms excel 2016 and imported into the GIS environment for the analysis, Inverse Distance Weighted (IDW) interpolation in the spatial analyst tool was applied to interpolate the population distribution map. The population distribution map was further reclassified into five subgroups based on potential to malaria risk. The reclassified map layer subgroups were ranked according to the vulnerability to malaria incidence in the locality such as areas having high population having the highest vulnerability and the less population having less vulnerable, and the new value was assigned as 1, 2, 3, 4 and 5, and then leveled as very high, high, moderate, low and very low malaria risk level, respectively. Creation of Proximity to Health Facilities Factor The distribution of health facilities has a significant impact on the malaria vulnerability of the population dwellings in the Kilombero Valley. The health facility layer was created by computing distance analysis using proximity multiple ring buffer features in spatial analyst tool/multiple ring buffer. Then the map layer was reclassified into five sub-layers such as within (0–5) km, (5.1–10) km, (10.1–20) km, (20.1–50) km and >50km. According to a WHO report, it is indicated that the human population who live nearby or easily accessible to health facilities is less vulnerable to malaria incidence than the ones who are very far from the health facilities due to the distance limitation for the health services. Later on, the new values were assigned as 1, 2, 3, 4 and 5, and then reclassified as very high, high, moderate, low and very low malaria risk levels, respectively. Creation of Proximity to Road Network Factor The distance to the road network is also a significant factor, as it can be used as an estimation of the access to present healthcare facilities in the area. Buffer zones were calculated on the path of the road to determine the effect of the road on malaria prevalence. The road shapefile of the study area was inputted into GIS environment and spatial analyst tools / multiple ring buffer feature were used to generate five buffer zones with the

  16. w

    The StreamCat Dataset: Accumulated Attributes for NHDPlusV2(Version 2.1)...

    • data.wu.ac.at
    html
    Updated Mar 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2018). The StreamCat Dataset: Accumulated Attributes for NHDPlusV2(Version 2.1) Catchments Riparian Buffer for the Conterminous United States: 2010 US Census Road Density [Dataset]. https://data.wu.ac.at/schema/data_gov/MjdlNDA5YmQtM2VlZC00Y2QyLWI4NmEtZTk4NzlhNTk3NDE1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 1, 2018
    Dataset provided by
    U.S. Environmental Protection Agency
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States, 609f4169d904357a88c7f46cc4ccd8482d49f040
    Description

    This dataset represents the road density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) This data set is derived from TIGER/Line Files of roads in the conterminous United States. Road density describes how many kilometers of road exist in a square kilometer. A raster was produced using the ArcGIS Line Density Tool to form the landscape layer for analysis. (see Data Sources for links to NHDPlusV2 data and Census Data) The (kilometer of road/square kilometer) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  17. a

    USFS Buffering America's Waterways Tool

    • gsat-chesbay.hub.arcgis.com
    • hamhanding-dcdev.opendata.arcgis.com
    • +1more
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2024). USFS Buffering America's Waterways Tool [Dataset]. https://gsat-chesbay.hub.arcgis.com/items/2ed592e904ce47db8e7b4356f39e648f
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    Chesapeake Geoplatform
    Area covered
    United States
    Description

    Open the Data Resource: https://storymaps.arcgis.com/collections/a6154d9b5b7149eda95500414fa3cadf?item=2 The Buffering America's Waterways Tool identifies watersheds across the country where there is the greatest opportunity to enhance surface drinking water quality by establishing trees, shrubs and other perennial vegetation in riparian areas. The tool aggregates the National Forests to Faucets 2.0 Assessment watershed importance data with percent of riparian area in cropland data (% cropland). The tool identifies riparian areas in watersheds important to surface drinking water that have a high opportunity for improving water quality by establishing perennial vegetation between cropland and water bodies.

  18. a

    Propane Facility Buffer

    • data-huron.opendata.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Jul 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huron_County (2018). Propane Facility Buffer [Dataset]. https://data-huron.opendata.arcgis.com/items/d454bbf6a8a44443a4099e4c8837860b
    Explore at:
    Dataset updated
    Jul 26, 2018
    Dataset authored and provided by
    Huron_County
    Area covered
    Description

    Propane facilities are required to have a buffer area representing the Hazard Distance Information for the facility in accordance with the changes made to the rules under the Planning Act, filed December 15, 2009 and TSSA's Advisory FS-162-09, as part of the propane operator's Risk and Safety Management plan (RSMP)

  19. a

    Flowlines

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). Flowlines [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/flowlines
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  20. FWS ACJV BLRA 30km buffers 2021

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2022). FWS ACJV BLRA 30km buffers 2021 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/a8462f88a59846a8820cea53b88e4131
    Explore at:
    Dataset updated
    Mar 31, 2022
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Description

    This layer identifies potential locations for development of habitat creation and/or improvement projects to benefit the Eastern Black Rail (Laterallus jamaicensis jamaicensis). Colored areas represent 30 km buffer around 3 levels of occupancy probability in tidal wetlands for the Eastern Black Rail ((blue: 0.2-0.25, pink: 0.25-0.5, and red: >0.5); Stevens et al. in prep) as well as inland detections of Black Rails in Florida (orange) that were not part of the occupancy analysis (Schwarzer, unpublished data). Although Black Rails have been known to disperse long distances, a buffer of 30km from potentially occupied areas was chosen to maximize Black Rail recruitment to newly created habitat. Incompatible land cover types within these buffers (Developed open space [low intensity, medium intensity, high intensity], unclassified, open water, forest [deciduous, evergreen, mixed], woody wetlands; National Land Cover Dataset 2019) were removed so that only land with potential for Black Rail habitat management is shown. This buffering tool is still in development, with a projected completion date of mid-2022.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri UK Education (2021). Create buffer around features [Dataset]. https://lecture-with-gis-esriukeducation.hub.arcgis.com/datasets/create-buffer-around-features
Organization logo

Create buffer around features

Explore at:
Dataset updated
Sep 17, 2021
Dataset provided by
Esrihttp://esri.com/
Authors
Esri UK Education
Description

The "Create Buffers" analysis tool in ArcGIS Online can be used to identify areas within a given distance of existing features, be those points, lines or polygons.The distance used for the buffers can either be a fixed distance from all features, or could be taken from a numerical value within each features attributes.

Search
Clear search
Close search
Google apps
Main menu