Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Built up area polygons represent where buildings are clustered together, such as urban areas. Layer can be used for activities such as monitoring urban grown, or responding to natural disasters. Product has been designed for AUSTopo - Australian Digital Topographic Map Series 250k. Built up area polygons designed for the AUSTopo - Australian Digital Topographic Map Series 250k. Feature class attributes include polygon area (in m2) and feature type (Builtup Area). This dataset provides valuable insights into the built environment of towns and cities, and serves as a crucial resource for urban planners, researchers, policymakers, and developers. Currency Date modified: 31 August 2023 Modification frequency: None Data extent Spatial extent North: -10.15° South: -43.44° East: 153.64° West: 113.42° Temporal extent From 1 January 2013 to 1 January 2018 Source information Catalog entry: Built Up Areas Dataset This dataset is generated from a publicly-available dataset: Bing Building Footprints, using the 'Delineate Built Up Area' tool in ArcGIS Pro. More information on the original source dataset can be found here. Lineage statement Dataset was generated by using the Bing Building Footprints of Australia (October 2020) dataset as an input. Built Up Area layer was created using the Delineate Built Up Areas tool in ArcGIS Pro in April 2023. This layer was produced as part of the update of AUSTopo - Australian Digital Topographic Map Series 250k. This dataset extracted on or before 4 SEPTEMBER 2023. This dataset has been projected from GDA2020 to Web Mercator as part of the Digital Atlas of Austalia project. Minor changes to symbology have been performed only as neccessary to meet the requirements of this project. Data dictionary All layers
Attribute name Description
Object ID Unique identifier for the area polygon
Area (sq. m) Measured area of the built-up region
Feature Type All features in this set are "Builtup Area"
SHAPE_Length Internal - length of the polygon perimeter
SHAPE_Area Internal - area of the generated polygon
Contact Geoscience Australia, clientservices@ga.gov.au
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for built up areas in Great Britain as at December 2022. The built up area boundaries are generalised and created using an automated approach based on a 25m grid squares (BGG).This file has been created from OS Open Built Up Areas. Further information about this product can be found in our FAQ document or from Ordnance Survey’s product information page.
Please note that this product contains both Ordnance Survey and ONS Intellectual Property Rights.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for built-up areas in England and Wales as at 27 March 2011 (Census day). The built-up area boundaries are generalised and created using an automated approach based on a 50m grid squares. UPDATE - 22/06/2017 - This boundary set has been updated with a new field (URBAN_BUA) describing whether the BUA has a population of 10000 or more (2011 Census) usual residents. No boundaries have been altered. Please note that this product contains both Ordnance Survey and ONS Intellectual Property Rights.
REST URL of ArcGIS for INSPIRE View Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Built-up_Areas_(Dec_2011)_Boundaries_V2/MapServer
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Built_up_Areas_Dec_2011_Boundaries_V2_2022/FeatureServer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015, and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more, which were listed in the United Nations (UN) World Urbanization Prospects (WUP) database (including Mainland China, Hong Kong, Macao and Taiwan). We employed a range of spectral indices to generate the 1990–2015 ISA maps in urban areas based on remotely sensed data acquired from multiple sources. In this process, various types of auxiliary data were used to create the desired products for urban areas through manual segmentation of peri-urban and rural areas together with reference to several freely available products of urban extent derived from ISA data using automated urban–rural segmentation methods. After that, following the well-established rules adopted by the UN, we carried out the conversion to the standardized built-up area products from the 1990–2015 ISA maps in urban areas, which conformed to the definition of urban agglomeration area (UAA). Finally, we implemented data postprocessing to guarantee the spatial accuracy and temporal consistency of the final product.The standardized urban built-up area dataset (SUBAD–China) introduced here is the first product using the same definition of UAA adopted by the WUP database for 433 county and higher-level cities in China. The comparisons made with contemporary data produced by the National Bureau of Statistics of China, the World Bank and UN-habitat indicate that our results have a high spatial accuracy and good temporal consistency and thus can be used to characterize the process of urban expansion in China.The SUBAD–China contains 2,598 vector files in shapefile format containing data for all China's cities listed in the WUP database that have different urban sizes and income levels with populations over 300,000. Attached with it, we also provided the distribution of validation points for the 1990–2010 ISA products of these 433 Chinese cities in shapefile format and the confusion matrices between classified data and reference data during different time periods as a Microsoft Excel Open XML Spreadsheet (XLSX) file.Furthermore, The standardized built-up area products for such cities will be consistently updated and refined to ensure the quality of their spatiotemporal coverage and accuracy. The production of this dataset together with the usage of population counts derived from the WUP database will close some of the data gaps in the calculation of SDG11.3.1 and benefit other downstream applications relevant to a combined analysis of the spatial and socio-economic domains in urban areas.
Built-Up Areas are man-made land cover features, ranging from small hamlets at rural cross roads to large cities.
Additional Documentation
Built-up Area - Data Description (PDF) Built-Up Area - Documentation (Word)
Status Completed: production of the data has been completed Maintenance and Update Frequency As needed: data is updated as deemed necessary Contact Ian Smyth, Ian.Smyth@ontario.ca
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Maybe your definition would be based on its population size, geographic extent or where the industry and services are located. This was a question the ONS had to consider when creating a new statistical geography called Towns and Cities. In reality, the ability to delimit the boundaries of a city or town is difficult! Major Towns and Cities The new statistical geography, Towns and Cities has been created based on population size and the extent of the built environment. It contains 112 towns and cities in England and Wales, where the residential and/or workday population > 75,000 people at the 2011 Census. It has been constructed using the existing Built-Up Area boundary set produced by Ordnance Survey in 2011. This swipe map shows where the towns and cities and built-up areas are different. Just swipe the bar from left to right. The blue polygons are the towns and cities and the purple polygons are the built-up areas.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A names and codes file for built-up area sub-divisions in England and Wales as at 27 March 2011 (Census day). File Size 54KB.REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/BUASD_MAR_2011_EW_NC_92b13b457eaf4fdfb1ef156e8f948114/FeatureServer
Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.The layers going from 1:1 to 1:1.5M present the 2010 Census Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000 people per square mile (ppsm) / 500 ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States. The layer going over 1:1.5M presents the urban areas in the United States derived from the urban areas layer of the Digital Chart of the World (DCW). It provides information about the locations, names, and populations of urbanized areas for conducting geographic analysis on national and large regional scales. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Census Urban Areas.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇬🇧 영국 English How would you define the boundaries of a town or city in England and Wales in 2016? Maybe your definition would be based on its population size, geographic extent or where the industry and services are located. This was a question the ONS had to consider when creating a new statistical geography called Towns and Cities. In reality, the ability to delimit the boundaries of a city or town is difficult! Major Towns and Cities The new statistical geography, Towns and Cities has been created based on population size and the extent of the built environment. It contains 112 towns and cities in England and Wales, where the residential and/or workday population > 75,000 people at the 2011 Census. It has been constructed using the existing Built-Up Area boundary set produced by Ordnance Survey in 2011. This swipe map shows where the towns and cities and built-up areas are different. Just swipe the bar from left to right. The blue polygons are the towns and cities and the purple polygons are the built-up areas.
No abstract provided
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for built-up area sub-divisions in England and Wales as at 27 March 2011 (Census day). The built-up area sub-division boundaries are generalised and created using an automated approach based on a 50m grid squares. Please note that this product contains both Ordnance Survey and ONS Intellectual Property Rights. Download File Size - 9 MBREST URL of ArcGIS for INSPIRE View Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Built-up_Area_Sub_Divisions_(Dec_2011)_Boundaries/MapServerREST URL of ArcGIS for INSPIRE Feature DownloadService – https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/Built_up_Area_Sub_Divisions_Dec_2011_Boundaries/WFSServer?service=wfs&request=getcapabilitiesREST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Built_up_Area_Sub_Divisions_Dec_2011_Boundaries_2022/FeatureServer
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A lookup between built-up areas and local authority districts as at 31 December 2011 in England and Wales (File Size 390KB)REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/BUA11_LAD11_EW_LU_ccfff9f71c3c48b9b49ecc9d0e79c8c8/FeatureServer
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Urban areas have a manifold and far-reaching impact on our environment, and the three-dimensional structure is a key aspect for characterizing the urban environment.
This dataset features a map of building height predictions for entire Germany on a 10m grid based on Sentinel-1A/B and Sentinel-2A/B time series. We utilized machine learning regression to extrapolate building height reference information to the entire country. The reference data were obtained from several freely and openly available 3D Building Models originating from official data sources (building footprint: cadaster, building height: airborne laser scanning), and represent the average building height within a radius of 50m relative to each pixel. Building height was only estimated for built-up areas (European Settlement Mask), and building height predictions <2m were set to 0m.
Temporal extent The acquisition dates of the different data sources vary to some degree: - Independent variables: Sentinel-2 data are from 2018; Sentinel-1 data are from 2017. - Dependent variables: the 3D building models are from 2012-2020 depending on data provider. - Settlement mask: the ESM is based on a mosaic of imagery from 2014-2016. Considering that net change of building stock is positive in Germany, the building height map is representative for ca. 2015.
Data format The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). Metadata are located within the Tiff, partly in the FORCE domain. There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems. Building height values are in meters, scaled by 10, i.e. a pixel value of 69 = 6.9m.
Further information For further information, please see the publication or contact David Frantz (david.frantz@geo.hu-berlin.de). A web-visualization of this dataset is available here.
Publication Frantz, D., Schug, F., Okujeni, A., Navacchi, C., Wagner, W., van der Linden, S., & Hostert, P. (2021). National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sensing of Environment, 252, 112128. DOI: https://doi.org/10.1016/j.rse.2020.112128
Acknowledgements The dataset was generated by FORCE v. 3.1 (paper, code), which is freely available software under the terms of the GNU General Public License v. >= 3. Sentinel imagery were obtained from the European Space Agency and the European Commission. The European Settlement Mask was obtained from the European Commission. 3D building models were obtained from Berlin Partner für Wirtschaft und Technologie GmbH, Freie und Hansestadt Hamburg / Landesbetrieb Geoinformation und Vermessung, Landeshauptstadt Potsdam, Bezirksregierung Köln / Geobasis NRW, and Kompetenzzentrum Geodateninfrastruktur Thüringen. This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
Funding This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Download In State Plane Projection Here. The pavement boundaries were traced from aerial photography taken between April 13 and April 26, 2002 and then updated from photography taken between March 15 and April 25, 2018. This dataset should meet National Map Accuracy Standards for a 1:1200 product. Lake County staff reviewed this dataset to ensure completeness and correct classification. In the case of a divided highway, the pavement on each side is captured separately. Island features in cul-de-sacs and in roads are included as a separate polygon.These building outlines were traced from aerial photography taken between April 13 and April 26, 2002 and then updated from successive years of photography. The most recent aerial photography was flown between March 11 and April 12, 2017. This dataset should meet National Map Accuracy Standards for a 1:1200 product. All the enclosed structures in Lake County with an area larger than 100 square feet as of April 2014 should be represented in this coverage. It should also be noted that a single polygon in this dataset could be composed of many structures that share walls or are otherwise touching. For example, a shopping mall may be captured as one polygon. Note that the roof area boundary is often not identical to the building footprint at ground level. Contributors to this dataset include: Municipal GIS Partners, Inc., Village of Gurnee, Village of Vernon Hills.
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An area containing a concentration of buildings and other structures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Area < 0.4 km2 or population >100 but < 5000 inhabitants. All municipalities and other built-up areas estimated to be important by their number of inhabitants and/or their outstanding localisation. Those built-up areas, which have less than 100 inhabitants but are main villages or cities of the regional/local administrative units, are included. The NAMN1 attribute stores the name of the populated place in the official primary language spoken in that populated place and administratively relevant.
Polygon feature layer representing built-up/urbanized areas in the City of Barrie. Relevant fields within the layer include (but not limited to): Description, Type and Area The City of Barrie is situated in the heart of Central Ontario, a premier waterfront community on Lake Simcoe, conveniently located an hour north of Toronto. With a growing population of 143,000 the City of Barrie is the 34th largest city in Canada. Visit barrie.ca for more information or contact Service Barrie at 705-726-4242 or ServiceBarrie@barrie.ca
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Built up area polygons represent where buildings are clustered together, such as urban areas. Layer can be used for activities such as monitoring urban grown, or responding to natural disasters. Product has been designed for AUSTopo - Australian Digital Topographic Map Series 250k. Built up area polygons designed for the AUSTopo - Australian Digital Topographic Map Series 250k. Feature class attributes include polygon area (in m2) and feature type (Builtup Area). This dataset provides valuable insights into the built environment of towns and cities, and serves as a crucial resource for urban planners, researchers, policymakers, and developers. Currency Date modified: 31 August 2023 Modification frequency: None Data extent Spatial extent North: -10.15° South: -43.44° East: 153.64° West: 113.42° Temporal extent From 1 January 2013 to 1 January 2018 Source information Catalog entry: Built Up Areas Dataset This dataset is generated from a publicly-available dataset: Bing Building Footprints, using the 'Delineate Built Up Area' tool in ArcGIS Pro. More information on the original source dataset can be found here. Lineage statement Dataset was generated by using the Bing Building Footprints of Australia (October 2020) dataset as an input. Built Up Area layer was created using the Delineate Built Up Areas tool in ArcGIS Pro in April 2023. This layer was produced as part of the update of AUSTopo - Australian Digital Topographic Map Series 250k. This dataset extracted on or before 4 SEPTEMBER 2023. This dataset has been projected from GDA2020 to Web Mercator as part of the Digital Atlas of Austalia project. Minor changes to symbology have been performed only as neccessary to meet the requirements of this project. Data dictionary All layers
Attribute name Description
Object ID Unique identifier for the area polygon
Area (sq. m) Measured area of the built-up region
Feature Type All features in this set are "Builtup Area"
SHAPE_Length Internal - length of the polygon perimeter
SHAPE_Area Internal - area of the generated polygon
Contact Geoscience Australia, clientservices@ga.gov.au