54 datasets found
  1. Data from: Occupational Employment Statistics

    • icpsr.umich.edu
    Updated Jun 26, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Labor. Bureau of Labor Statistics (2015). Occupational Employment Statistics [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/36219
    Explore at:
    Dataset updated
    Jun 26, 2015
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Labor. Bureau of Labor Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36219/terms

    Area covered
    United States, Puerto Rico, Virgin Islands of the United States, Guam
    Description

    The Occupational Employment Statistics (OES) program conducts a semiannual survey designed to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. The Bureau of Labor Statistics produces occupational employment and wage estimates for approximately 415 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and selected 5- and 6-digit North American Industry Classification System (NAICS) industrial groups. The OES program surveys approximately 200,000 establishments per panel (every six months), taking three years to fully collect the sample of 1.2 million establishments. To reduce respondent burden, the collection is on a three-year survey cycle that ensures that establishments are surveyed at most once every three years. The estimates for occupations in nonfarm establishments are based on OES data collected for the reference months of May and November. The OES survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OES survey make these estimates possible. The OES features several arts-related occupations, particularly in the Arts, Design, Entertainment, Sports, and Media Occupations group (Standard Occupational Classification (SOC) code 27-0000). Several featured occupation groups include the following: Art and Design Workers (SOC 27-1000) Art Directors Fine Artists, including Painters, Sculptors, and Illustrators Multimedia Artists and Animators Fashion Designers Graphic Designers Set and Exhibit Designers Entertainers and Performers, Sports and Related Workers (SOC 27-2000) Actors Producers and Directors Athletes Coaches and Scouts Dancers Choreographers Music Directors and Composers Musicians and Singers Media and Communication Workers (SOC 27-3000) Radio and Television Announcers Reports and Correspondents Public Relations Specialists Writers and Authors Data for years 1997 through the latest release and can be found on the OES Data page. Also, see OES News Releases sections for current estimates and news releases. Users can analyze the data for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. As well, OES Charts are available. Users may also explore data using OES Maps. If preferred, data can also be accessed via the Multi-Screen Data Search or Text Files using the OES Databases page.

  2. Occupational Employment and Wage Statistics (OEWS)

    • catalog.data.gov
    • data.ca.gov
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department (2024). Occupational Employment and Wage Statistics (OEWS) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oews-4b4c4
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Description

    The Occupational Employment and Wage Statistics (OEWS) Survey collects data from a sample of establishments and calculates employment and wage estimates by occupation, industry, and geographic area. The semiannual survey covers all non-farm industries. Data are collected by the Employment Development Department in cooperation with the Bureau of Labor Statistics, US Department of Labor. The OEWS Program estimates employment and wages for over 800 occupations from an annual sample of approx. 34,000 California employers. It also produces employment and wage estimates for statewide, Metropolitan Statistical Areas (MSAs), and Balance of State areas. Estimates are a snapshot in time and should not be used as a time series.

  3. V

    Occupational Employment and Wage Estimates - Washington

    • data.virginia.gov
    csv
    Updated Mar 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datathon 2024 (2024). Occupational Employment and Wage Estimates - Washington [Dataset]. https://data.virginia.gov/dataset/occupational-employment-and-wage-estimates-washington
    Explore at:
    csv(841538)Available download formats
    Dataset updated
    Mar 11, 2024
    Dataset authored and provided by
    Datathon 2024
    Description

    Washington State, metropolitan statistical areas (MSA) and nonmetropolitan areas (NMA), 2020 OEWS is a program of the U.S. Department of Labor, Bureau of Labor Statistics (BLS). This federal-state cooperative program produces employment and wage estimates for nearly 867 occupations. The occupational employment and wage estimates are based on data collected from the OEWS survey. The survey includes employment counts, occupations and wages from more than 4,200 Washington state employers. Data from six survey panels are combined to create a sample size of more than 26,400 employers. Blanks in the data columns indicate suppressed data.

  4. Utah Occupational Employment And Wages Data By Job

    • opendata.utah.gov
    • data.virginia.gov
    application/rdfxml +5
    Updated Dec 23, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2014). Utah Occupational Employment And Wages Data By Job [Dataset]. https://opendata.utah.gov/Jobs/Utah-Occupational-Employment-And-Wages-Data-By-Job/88ws-42u9
    Explore at:
    tsv, xml, application/rdfxml, application/rssxml, csv, jsonAvailable download formats
    Dataset updated
    Dec 23, 2014
    Dataset authored and provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Utah
    Description

    The Occupational Employment Statistics (OES) program produces employment and wage estimates annually for over 800 occupations. These estimates are available for the nation as a whole, for individual States, and for metropolitan and nonmetropolitan areas; national occupational estimates for specific industries are also available.

  5. Quarterly Census of Employment and Wages (QCEW)

    • catalog.data.gov
    • data.ca.gov
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department (2024). Quarterly Census of Employment and Wages (QCEW) [Dataset]. https://catalog.data.gov/dataset/quarterly-census-of-employment-and-wages-qcew-a6fea
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Description

    The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.

  6. DQS Health care employment and wages, by selected occupations: United States...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). DQS Health care employment and wages, by selected occupations: United States [Dataset]. https://data.virginia.gov/dataset/dqs-health-care-employment-and-wages-by-selected-occupations-united-states
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Data on health care employment and wages in the United States, by selected occupations. Data are from Health, United States. Source: U.S. Department of Labor, Bureau of Labor Statistics, Occupational Employment and Wage Statistics. Search, visualize, and download these and other estimates from over 120 health topics with the NCHS Data Query System (DQS), available from: https://www.cdc.gov/nchs/dataquery/index.htm.

  7. T

    Vital Signs: Jobs by Wage Level - Metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Metro/bt32-8udw
    Explore at:
    csv, tsv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  8. Occupation, Salary and Likelihood of Automation

    • kaggle.com
    Updated May 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Occupation, Salary and Likelihood of Automation [Dataset]. https://www.kaggle.com/datasets/andrewmvd/occupation-salary-and-likelihood-of-automation/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Larxel
    Description

    About this Dataset

    This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.

    How to Cite this Dataset

    If you use this dataset in your research, please credit the authors.

    Salary Data

    @misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}

    Automation Data

    @article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}

    License

    License was not specified at the source.

    Splash Banner

    Photo by Alex Knight on Unsplash

  9. V

    Texas Workforce Development Areas (WDA) Wages

    • data.virginia.gov
    csv
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datathon 2024 (2024). Texas Workforce Development Areas (WDA) Wages [Dataset]. https://data.virginia.gov/dataset/texas-workforce-development-areas-wda-wages
    Explore at:
    csv(3340241)Available download formats
    Dataset updated
    Feb 28, 2024
    Dataset authored and provided by
    Datathon 2024
    Description

    The Bureau of Labor Statistics (BLS) calculates employment and wage estimates for every state, Metropolitan Statistical Area and Balance-of-State area in the United States. In order to better meet the needs of local users, the Occupational Employment and Wage Statistics (OEWS) staff in the Texas Labor Market Information Department of the Texas Workforce Commission (LMI) has produced wage estimates for geographic areas not produced by BLS. Workforce Development Areas (WDAs) are not published by BLS and are not, therefore, official BLS data series. Due to confidentiality and quality criteria, LMI cannot produce estimates for every occupation in every geographic area.

  10. F

    Employment Level - Construction and Extraction Occupations

    • fred.stlouisfed.org
    json
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Level - Construction and Extraction Occupations [Dataset]. https://fred.stlouisfed.org/series/LNU02032210
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 7, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Level - Construction and Extraction Occupations (LNU02032210) from Jan 1983 to Feb 2025 about extraction, occupation, 16 years +, construction, household survey, employment, and USA.

  11. F

    Employed full time: Wage and salary workers: Survey researchers occupations:...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0257864200A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women (LEU0257864200A) from 2011 to 2024 about occupation, females, full-time, salaries, workers, 16 years +, wages, employment, and USA.

  12. Nation

    • hub.arcgis.com
    Updated Aug 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2019). Nation [Dataset]. https://hub.arcgis.com/datasets/UrbanObservatory::nation?uiVersion=content-views
    Explore at:
    Dataset updated
    Aug 27, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This feature service contains employment and wage data for detailed farming, fishing, and forestry occupations by nation, state, and metropolitan and nonmetropolitan areas. Data from Bureau of Labor Statistics' (BLS) Occupation Employment Statistics (OES) series. Data vintage: May 2018.Boundary files came from U.S. Census Bureau's 2018 Cartographic Boundary Files. Nonmetropolitan areas were constructed based on BLS' May 2018 Area Definitions.A few Frequently Asked Questions from BLS' OES FAQ site:How are "employees" defined by the OES Survey? "Employees" are all part-time and full-time workers who are paid a wage or salary. The survey does not cover the self-employed, owners and partners in unincorporated firms, household workers, or unpaid family workers.Do OES wage estimates include benefits? No. OES wage estimates represent wages and salaries only, and do not include nonproduction bonuses or employer costs of nonwage benefits, such as health insurance or employer contributions to retirement plans. Information on cost of benefits, benefit incidence, and detailed plan provisions is available from the National Compensation Survey program.Why does the sum of the areas within a state not equal the statewide employment? The sum of the areas may differ from statewide employment for several reasons:RoundingThe totals include data items that are not released separately due to confidentiality and quality reasons.Many States include metropolitan areas that cross State lines. These cross-State metropolitan area estimates include data from each State, which should not be included in a total for a single State.A small number of establishments indicate the State in which their employees are located, but do not indicate the specific metropolitan or nonmetropolitan area in which they are located. Data for these establishments are used in the calculation of the statewide estimates, but are not included in the estimates of any individual area.Why don't the major group or "all occupations" employment totals equal the sum of the employment estimates for the detailed occupations? The major group and "all occupations" totals may include detailed occupations for which separate employment estimates could not be published. As a result, employment totals at the major group and "all occupations" levels may be greater than the sum of employment estimates for the detailed occupations. Because the major group employment totals include employment for the detailed occupations in that group, summing across both detailed occupations and major groups will result in double counting of occupational employment.

  13. V

    Employment First Annual OVR Outcomes Current Statewide Labor & Industry - PA...

    • data.virginia.gov
    csv
    Updated Feb 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment First Annual OVR Outcomes Current Statewide Labor & Industry - PA [Dataset]. https://data.virginia.gov/dataset/employment-first-annual-ovr-outcomes-current-statewide-labor-industry-pa
    Explore at:
    csv(12236), csv(1336)Available download formats
    Dataset updated
    Feb 20, 2024
    Dataset authored and provided by
    Datathon 2024
    Area covered
    Pennsylvania
    Description

    The following are a selection of annual outcomes of services provided by the Pennsylvania's Department of Labor & Industry's Office of Vocational Rehabilitation. Outcomes include applicants and case outcomes including employment and wages.

    Key Footnotes: 1) Employed in Competitive Labor Market means employment at or above the minimum wage in settings where most employees do not have disabilities. 2) Estimated Taxes Paid are based on a standard deduction for the year, annual tax brackets and rates established by the IRS, and flat-rate FICA, state, and local taxes. 3) Estimated Total Government Savings are estimated federal, state, and local taxes paid plus annualized public support dollars at closure. 4) Average per Person Cost for a Competitive Employment Placement is the average individual "life of case" cost for all persons having a competitive employment outcome regardless of total number of years receiving services. 5) Average per Person Cost of Services is the average individual "life of case" cost for all persons having an employment outcome regardless of total number of years receiving services. 6) Source: U.S. Department of Labor, Bureau of Labor Statistics, May 2016 State Occupational Employment and Wage Estimates, Pennsylvania, https://www.bls.gov/oes/current/oes_pa.htm#00-0000.

  14. V

    Occupational Wages 2018 Labor and Industry PA

    • data.virginia.gov
    csv
    Updated Feb 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datathon 2024 (2024). Occupational Wages 2018 Labor and Industry PA [Dataset]. https://data.virginia.gov/dataset/occupational-wages-2018-labor-and-industry-pa
    Explore at:
    csv(6215490)Available download formats
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    Datathon 2024
    Area covered
    Pennsylvania
    Description

    Represents a comprehensive collection of occupational wage data available for Pennsylvania. Data are collected through the Occupational Employment Statistics program in cooperation with the U.S. Department of Labor’s Bureau of Labor Statistics. Occupational wage information can be used as a reference by educators, PACareerLink® staff, career counselors, Workforce Development Boards, economic developers, program planners, and others.

    Technical Note Occupational wages do not represent a time series. Due to the prescribed production methodology, current occupational wages are not comparable to previously published occupational wages.

  15. U.S. unemployment rate 2025, by occupation

    • statista.com
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. unemployment rate 2025, by occupation [Dataset]. https://www.statista.com/statistics/217782/unemployment-rate-in-the-united-states-by-occupation/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    United States
    Description

    In February 2025, the unemployment rate for those aged 16 and over in the United States came to 4.5 percent. Service occupations had an unemployment rate of 6.3 percent in that month. The underemployment rate of the country can be accessed here and the monthly unemployment rate here. Unemployment by occupation in the U.S. The United States Bureau of Labor Statistics publish data on the unemployment situation within certain occupations in the United States on a monthly basis. According to latest data released from May 2023, transportation and material moving occupations experienced the highest level of unemployment that month, with a rate of around 5.6 percent. Second ranked was farming, fishing, and forestry occupations with a rate of 4.9 percent. Total (not seasonally adjusted) unemployment was reported at 3.6 percent in March 2023. Other data on the U.S. unemployment rate by industry and class of worker shows comparable results. It should be noted that the data were not seasonally adjusted to account for normal seasonal fluctuations in unemployment. The monthly unemployment by occupation data can be compared to the seasonally adjusted monthly unemployment rate. In March 2023, the seasonally adjusted unemployment rate was 3.5 percent, which was an increase from the previous month. The annual unemployment rate in 2022 was 3.6 percent, down from a high of 9.6 in 2010. Unemployment in the United States trended downward after the coronavirus pandemic, and is now experiencing consistently low rates - a sign of economic stability. Individuals who opt to leave the workforce and stop looking for employment are not included among the unemployed. The civilian labor force participation rate in the U.S. rose to 62.2 percent in 2022, down from 67.1 percent in 2000, before the financial crisis.

  16. F

    Employed full time: Median usual weekly nominal earnings (second quartile):...

    • fred.stlouisfed.org
    json
    Updated Feb 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Employed full time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: Roustabouts, oil and gas occupations: 16 years and over: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0254775800A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 18, 2015
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: Roustabouts, oil and gas occupations: 16 years and over: Women (LEU0254775800A) from 2000 to 2011 about second quartile, occupation, females, full-time, oil, salaries, gas, workers, earnings, 16 years +, wages, median, employment, and USA.

  17. F

    Employment Cost Index: Wages and salaries for All Civilian workers in All...

    • fred.stlouisfed.org
    json
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Cost Index: Wages and salaries for All Civilian workers in All industries and occupations [Dataset]. https://fred.stlouisfed.org/series/CIU1020000000000I
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Cost Index: Wages and salaries for All Civilian workers in All industries and occupations (CIU1020000000000I) from Q1 2001 to Q4 2024 about ECI, occupation, salaries, workers, civilian, wages, industry, and USA.

  18. F

    Employed full time: Wage and salary workers: Occupational therapists...

    • fred.stlouisfed.org
    json
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Wage and salary workers: Occupational therapists occupations: 16 years and over: Women [Dataset]. https://fred.stlouisfed.org/series/LEU0254701700A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Wage and salary workers: Occupational therapists occupations: 16 years and over: Women (LEU0254701700A) from 2000 to 2024 about occupation, females, full-time, salaries, workers, 16 years +, wages, employment, and USA.

  19. F

    Employment Level - Sales and Office Occupations

    • fred.stlouisfed.org
    json
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment Level - Sales and Office Occupations [Dataset]. https://fred.stlouisfed.org/series/LNU02032205
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 7, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment Level - Sales and Office Occupations (LNU02032205) from Jan 1983 to Feb 2025 about occupation, 16 years +, sales, household survey, employment, and USA.

  20. Long-Term Occupational Employment Projections

    • data.ca.gov
    csv
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Long-Term Occupational Employment Projections [Dataset]. https://data.ca.gov/dataset/long-term-occupational-employment-projections
    Explore at:
    csv(3604261)Available download formats
    Dataset updated
    May 26, 2023
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Authors
    California Employment Development Department
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Long-term Occupational Projections for a 10-year time horizon are provided for the State and its labor market regions to provide individuals and organizations with an occupational outlook to make informed decisions on individual career and organizational program development. Long-term projections are revised annually. Data are not available for geographies below the labor market regions. Detail may not add to summary lines due to suppression of data because of confidentiality and/or quality.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Department of Labor. Bureau of Labor Statistics (2015). Occupational Employment Statistics [Dataset]. https://www.icpsr.umich.edu/web/NADAC/studies/36219
Organization logo

Data from: Occupational Employment Statistics

Related Article
Explore at:
Dataset updated
Jun 26, 2015
Dataset provided by
Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
Authors
United States Department of Labor. Bureau of Labor Statistics
License

https://www.icpsr.umich.edu/web/ICPSR/studies/36219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36219/terms

Area covered
United States, Puerto Rico, Virgin Islands of the United States, Guam
Description

The Occupational Employment Statistics (OES) program conducts a semiannual survey designed to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. The Bureau of Labor Statistics produces occupational employment and wage estimates for approximately 415 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and selected 5- and 6-digit North American Industry Classification System (NAICS) industrial groups. The OES program surveys approximately 200,000 establishments per panel (every six months), taking three years to fully collect the sample of 1.2 million establishments. To reduce respondent burden, the collection is on a three-year survey cycle that ensures that establishments are surveyed at most once every three years. The estimates for occupations in nonfarm establishments are based on OES data collected for the reference months of May and November. The OES survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OES survey make these estimates possible. The OES features several arts-related occupations, particularly in the Arts, Design, Entertainment, Sports, and Media Occupations group (Standard Occupational Classification (SOC) code 27-0000). Several featured occupation groups include the following: Art and Design Workers (SOC 27-1000) Art Directors Fine Artists, including Painters, Sculptors, and Illustrators Multimedia Artists and Animators Fashion Designers Graphic Designers Set and Exhibit Designers Entertainers and Performers, Sports and Related Workers (SOC 27-2000) Actors Producers and Directors Athletes Coaches and Scouts Dancers Choreographers Music Directors and Composers Musicians and Singers Media and Communication Workers (SOC 27-3000) Radio and Television Announcers Reports and Correspondents Public Relations Specialists Writers and Authors Data for years 1997 through the latest release and can be found on the OES Data page. Also, see OES News Releases sections for current estimates and news releases. Users can analyze the data for the nation as a whole, by state, by metropolitan or nonmetropolitan area, and by industry or ownership. As well, OES Charts are available. Users may also explore data using OES Maps. If preferred, data can also be accessed via the Multi-Screen Data Search or Text Files using the OES Databases page.

Search
Clear search
Close search
Google apps
Main menu