14 datasets found
  1. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  2. f

    Host country of organization for 86 websites in study.

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Host country of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Host country of organization for 86 websites in study.

  3. f

    Summary of results comparing Google Analytics and SimilarWeb for total...

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Summary of results comparing Google Analytics and SimilarWeb for total visits, unique visitors, bounce rate, and average session duration. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Difference uses Google Analytics as the Baseline. Results based on Paired t-Test for Hypotheses Supported.

  4. Traffic Acquisition to LAMs Websites

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioannis C. Drivas; Ioannis C. Drivas; Dimitrios Kouis; Dimitrios Kouis (2022). Traffic Acquisition to LAMs Websites [Dataset]. http://doi.org/10.5281/zenodo.6505277
    Explore at:
    Dataset updated
    Apr 30, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ioannis C. Drivas; Ioannis C. Drivas; Dimitrios Kouis; Dimitrios Kouis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Preliminary research efforts regarding Social Media Platforms and their contribution to website traffic in LAMs. Through the Similar Web API, the leading social networks (Facebook, Twitter, Youtube, Instagram, Reddit, Pinterest, LinkedIn) that drove traffic to each one of the 220 cases in our dataset were identified and analyzed in the first sheet. Aggregated results proved that Facebook platform was responsible for 46.1% of social traffic (second sheet).

  5. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/62549059/?iid=003-357&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  6. f

    Comparison of definitions of total visits, unique visitors, bounce rate, and...

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb.

  7. A

    Alternative Data Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2024). Alternative Data Market Report [Dataset]. https://www.archivemarketresearch.com/reports/alternative-data-market-5021
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 8, 2024
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. The use and processing of information that is not in financial databases is known as the alternative data market. Such data involves posts in social networks, satellite images, credit card transactions, web traffic and many others. It is mostly used in financial field to make the investment decisions, managing risks and analyzing competitors, giving a more general view on market trends as well as consumers’ attitude. It has been found that there is increasing requirement for the obtaining of data from unconventional sources as firms strive to nose ahead in highly competitive markets. Some current trend are the finding of AI and machine learning to drive large sets of data and the broadening utilization of the so called “Alternative Data” across industries that are not only the finance industry. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .

  8. Bounce rate of leading consumer electronics sites worldwide 2024

    • statista.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Bounce rate of leading consumer electronics sites worldwide 2024 [Dataset]. https://www.statista.com/statistics/1325859/consumer-electronics-websites-bounce-rate-worldwide/
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2024
    Area covered
    Worldwide
    Description

    Among selected consumer electronics retailers worldwide, apple.com recorded the highest bounce rate in April 2024, at approximately 55.3 percent. Rival samsung.com had a slightly lower bounce rate of nearly 54 percent. Among selected consumer electronics e-tailers, huawei.com had the lowest bounce rate at 30.91 percent. Bounce rate is a marketing term used in web traffic analysis reflecting the percentage of visitors who enter the site and then leave without taking any further action like making a purchase or viewing other pages within the website ("bounce"). A sector with growth potential With one of the lowest online shopping cart abandonment rates globally in 2022, consumer electronics is a burgeoning e-commerce segment that places itself at the crossroads between technological progress and digital transformation. Boosted by the pandemic-induced surge in online shopping, the global market size of consumer electronics e-commerce was estimated at more than 340 billion U.S. dollars in 2021 and forecast to nearly double less than five years later. Amazon and Apple lead the charts in electronics e-commerce With more than 59 billion U.S. dollars in e-commerce net sales in the consumer electronics segment in 2022, apple.com was the uncontested industry leader. The global powerhouse surpassed e-commerce giants amazon.com and jd.com with more than ten billion U.S. dollars difference in online sales in the consumer electronics category.

  9. f

    Website type for the 86 websites in study.

    • figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Website type for the 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Website type for the 86 websites in study.

  10. f

    Industry vertical of organization for 86 websites in study.

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Industry vertical of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Industry vertical of organization for 86 websites in study.

  11. f

    Comparison of user, site, and network-centric approaches to web analytics...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study.

  12. A

    Alternative Data Platform Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Alternative Data Platform Report [Dataset]. https://www.marketreportanalytics.com/reports/alternative-data-platform-55013
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Alternative Data Platform market is experiencing robust growth, driven by the increasing need for businesses across diverse sectors to leverage non-traditional data sources for improved decision-making. The market, estimated at $5 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of 25%. This growth is primarily attributed to several key factors. Firstly, the rising adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting businesses of all sizes. Secondly, the expanding application of alternative data in areas like fraud detection (BFSI), supply chain optimization (Retail and Logistics), and market prediction (IT and Telecommunications) is pushing market expansion. Furthermore, the increasing availability and affordability of alternative data sources, combined with advancements in data analytics and machine learning, are enabling businesses to extract greater value from these non-traditional datasets. While data security and privacy concerns present a challenge, the overall market outlook remains overwhelmingly positive. The market segmentation reveals strong growth across various applications and types. The BFSI sector is a major driver due to its need for enhanced risk management and fraud prevention. The cloud-based segment dominates the market due to its flexibility and accessibility. North America currently holds the largest market share, followed by Europe and Asia Pacific, reflecting the higher level of technological advancement and adoption in these regions. However, the Asia Pacific region is poised for significant growth due to increasing digitalization and rising investments in data analytics infrastructure. The competitive landscape is dynamic, with a mix of established players and emerging startups offering diverse solutions. The success of individual companies depends on their ability to innovate, provide reliable data, ensure data security, and offer user-friendly platforms. Competition is likely to intensify as more companies enter this rapidly evolving market.

  13. f

    Brief query descriptions by data source.

    • plos.figshare.com
    xls
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephanie R. Pitts; Sarah Trigger; Dannielle E. Kelley (2024). Brief query descriptions by data source. [Dataset]. http://doi.org/10.1371/journal.pone.0311723.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Stephanie R. Pitts; Sarah Trigger; Dannielle E. Kelley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.

  14. Total global visitor traffic to Tumblr.com 2024

    • statista.com
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total global visitor traffic to Tumblr.com 2024 [Dataset]. https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/
    Explore at:
    Dataset updated
    Nov 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, the social network Tumblr.com had 191.1 million website visits worldwide, down from 198.3 million site visits by the end of 2023. In December 2018, the platform banned porn and adult content, a controversial move that sparked user outrage and caused artists and sex workers to move to other sites.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
Organization logoOrganization logo

Data from: Analysis of the Quantitative Impact of Social Networks General Data.doc

Related Article
Explore at:
docAvailable download formats
Dataset updated
Oct 14, 2022
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

Search
Clear search
Close search
Google apps
Main menu