Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These SAS files are sample code used for the Monte Carlo studies in a manuscript on statistical properties of four effect size measures for the mediated effect.Citation:Miočević, M., O’Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2016). The bias and efficiency of five effect size measures for mediation models. Under review at Behavior Research Methods.
This publication provides all the information required to understand the PISA 2003 educational performance database and perform analyses in accordance with the complex methodologies used to collect and process the data. It enables researchers to both reproduce the initial results and to undertake further analyses. The publication includes introductory chapters explaining the statistical theories and concepts required to analyse the PISA data, including full chapters on how to apply replicate weights and undertake analyses using plausible values; worked examples providing full syntax in SAS®; and a comprehensive description of the OECD PISA 2003 international database. The PISA 2003 database includes micro-level data on student educational performance for 41 countries collected in 2003, together with students’ responses to the PISA 2003 questionnaires and the test questions. A similar manual is available for SPSS users.
https://choosealicense.com/no-permission/https://choosealicense.com/no-permission/
The dataset contains data from 3,786 patients. It is not available for download here, but registered in the FAIR4Health Platform portal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SAS script and input files for calculations of sensitivity and specificity based on different model settings and weather data in the weather data file supplied here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Semantic Artist Similarity dataset consists of two datasets of artists entities with their corresponding biography texts, and the list of top-10 most similar artists within the datasets used as ground truth. The dataset is composed by a corpus of 268 artists and a slightly larger one of 2,336 artists, both gathered from Last.fm in March 2015. The former is mapped to the MIREX Audio and Music Similarity evaluation dataset, so that its similarity judgments can be used as ground truth. For the latter corpus we use the similarity between artists as provided by the Last.fm API. For every artist there is a list with the top-10 most related artists. In the MIREX dataset there are 188 artists with at least 10 similar artists, the other 80 artists have less than 10 similar artists. In the Last.fm API dataset all artists have a list of 10 similar artists. There are 4 files in the dataset.mirex_gold_top10.txt and lastfmapi_gold_top10.txt have the top-10 lists of artists for every artist of both datasets. Artists are identified by MusicBrainz ID. The format of the file is one line per artist, with the artist mbid separated by a tab with the list of top-10 related artists identified by their mbid separated by spaces.artist_mbid \t artist_mbid_top10_list_separated_by_spaces mb2uri_mirex and mb2uri_lastfmapi.txt have the list of artists. In each line there are three fields separated by tabs. First field is the MusicBrainz ID, second field is the last.fm name of the artist, and third field is the DBpedia uri.artist_mbid \t lastfm_name \t dbpedia_uri There are also 2 folders in the dataset with the biography texts of each dataset. Each .txt file in the biography folders is named with the MusicBrainz ID of the biographied artist. Biographies were gathered from the Last.fm wiki page of every artist.Using this datasetWe would highly appreciate if scientific publications of works partly based on the Semantic Artist Similarity dataset quote the following publication:Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (In Press). A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference.We are interested in knowing if you find our datasets useful! If you use our dataset please email us at mtg-info@upf.edu and tell us about your research. https://www.upf.edu/web/mtg/semantic-similarity
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SAS PROC used to evaluate SSMT data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List Code_and_Data_Supplement.zip (md5: dea8636b921f39c9d3fd269e44b6228c) Description The supplementary material provided includes all code and data files necessary to replicate the simulation models other demographic analyses presented in the paper. MATLAB code is provided for the simulations, and SAS code is provided to show how model parameters (vital rates) were estimated.
The principal programs are Figure_3_4_5_Elasticity_Contours.m and Figure_6_Contours_Stochastic_Lambda.m which perform the elasticity analyses and run the stochastic simulation, respectively.
The files are presented in a zipped folder called Code_and_Data_Supplement. When uncompressed, users may run the MATLAB programs by opening them from within this directory. Subdirectories contain the data files and supporting MATLAB functions necessary to complete execution. The programs are written to find the necessary supporting functions in the Code_and_Data_Supplement directory. If users copy these MATLAB files to a different directory, they must add the Code_and_Data_Supplement directory and its subdirectories to their search path to make the supporting files available.
More details are provided in the README.txt file included in the supplement.
The file and directory structure of entire zipped supplement is shown below.
Folder PATH listing
Code_and_Data_Supplement
| Figure_3_4_5_Elasticity_Contours.m
| Figure_6_Contours_Stochastic_Lambda.m
| Figure_A1_RefitG2.m
| Figure_A2_PlotFecundityRegression.m
| README.txt
|
+---FinalDataFiles
+---Make Tables
| README.txt
| Table_lamANNUAL.csv
| Table_mgtProbPredicted.csv
|
+---ParameterEstimation
| | Categorical Model output.xls
| |
| +---Fecundity
| | Appendix_A3_Fecundity_Breakpoint.sas
| | fec_Cat_Indiv.sas
| | Mean_Fec_Previous_Study.m
| |
| +---G1
| | G1_Cat.sas
| |
| +---G2
| | G2_Cat.sas
| |
| +---Model Ranking
| | Categorical Model Ranking.xls
| |
| +---Seedlings
| | sdl_Cat.sas
| |
| +---SS
| | SS_Cat.sas
| |
| +---SumSrv
| | sum_Cat.sas
| |
| \---WinSrv
| modavg.m
| winCatModAvgfitted.m
| winCatModAvgLinP.m
| winCatModAvgMu.m
| win_Cat.sas
|
+---ProcessedDatafiles
| fecdat_gm_param_est_paper.mat
| hierarchical_parameters.mat
| refitG2_param_estimation.mat
|
\---Required_Functions
| hline.m
| hmstoc.m
| Jeffs_Figure_Settings.m
| Jeffs_startup.m
| newbootci.m
| sem.m
| senstuff.m
| vline.m
|
+---export_fig
| change_value.m
| eps2pdf.m
| export_fig.m
| fix_lines.m
| ghostscript.m
| license.txt
| pdf2eps.m
| pdftops.m
| print2array.m
| print2eps.m
|
+---lowess
| license.txt
| lowess.m
|
+---Multiprod_2009
| | Appendix A - Algorithm.pdf
| | Appendix B - Testing speed and memory usage.pdf
| | Appendix C - Syntaxes.pdf
| | license.txt
| | loc2loc.m
| | MULTIPROD Toolbox Manual.pdf
| | multiprod.m
| | multitransp.m
| |
| \---Testing
| | arraylab13.m
| | arraylab131.m
| | arraylab132.m
| | arraylab133.m
| | genop.m
| | multiprod13.m
| | readme.txt
| | sysrequirements_for_testing.m
| | testing_memory_usage.m
| | testMULTIPROD.m
| | timing_arraylab_engines.m
| | timing_matlab_commands.m
| | timing_MX.m
| |
| \---Data
| Memory used by MATLAB statements.xls
| Timing results.xlsx
| timing_MX.txt
|
+---province
| PROVINCE.DBF
| province.prj
| PROVINCE.SHP
| PROVINCE.SHX
| README.txt
|
+---SubAxis
| parseArgs.m
| subaxis.m
|
+---suplabel
| license.txt
| suplabel.m
| suplabel_test.m
|
\---tight_subplot
license.txt
tight_subplot.m
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
One of three dataset to replicate numbers for tables and figures in the article "Using a Deliberative Poll on breast cancer screening to assess and improve the decision quality of laypeople" by Manja D. Jensen, Kasper M. Hansen, Volkert Siersma, and John Brodersen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
SAS Project is a dataset for object detection tasks - it contains Person Gun Knife Fire Bat annotations for 7,868 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
SAS-Bench represents the first specialized benchmark for evaluating Large Language Models (LLMs) on Short Answer Scoring (SAS) tasks. Utilizing authentic questions from China's National College Entrance Examination (Gaokao), our benchmark offers:
1,030 questions spanning 9 academic disciplines 4,109 expert-annotated student responses Step-wise scoring with Step-wise error analysis Multi-dimensional evaluation (holistic scoring, step-wise scoring, and error diagnosis consistency)
This research work studied the effect of timing constraint and overloading of Spectrum Access System (SAS) on the SAS-CBSD protocol. Specifically, it studies how Heartbeat and Grant Request fail as number of CBSDs served by a SAS becomes large for a given service rate. It also looks at the time taken by CBSDs to vacate a channel (on which an incumbent has appeared) at different Heartbeat Interval. These study results are captured in the following files. (1) Number of CBSD vs number of Heartbeat timeout when SAS service rate is 40 requests/sec (2) Number of CBSD vs number of Heartbeat timeout when SAS service rate is 60 requests/sec (3) Number of CBSD vs number of failed grants when SAS service rate is 40 requests/sec (4) Number of CBSD vs number of failed grants when SAS service rate is 60 requests/sec (5) CDF of duration of CBSDs vacating a channel when number of CBSD=700, mean heartbeat interval = 90 s (6) CDF of duration of CBSDs vacating a channel when number of CBSD=1200, mean heartbeat interval = 150 s (7) CDF of duration of CBSDs vacating a channel when number of CBSD=1500, mean heartbeat interval = 220 s
After the number of flights decreased by 48 percent in 2020 due to the impact of the coronavirus pandemic and fell further in 2021, flight numbers began to recover in 2022. In 2022, SAS operated 183,500 scheduled flights. The positive trend persisted in the subsequent year, 2023, with a total of 217,000 flights.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Matching is frequently used in observational studies, especially in medical research. However, only a small number of articles with matching programs for the SAS software (SAS Institute Inc., Cary, NC, USA) are available, even less are usable for inexperienced users of SAS software. This article presents a matching program for the SAS software and links to an online repository for examples and test data. The program enables matching on several variables and includes in-depth explanation of the expressions used and how to customize the program. The selection of controls is randomized and automated, minimizing the risk of selection bias. Also, the program provides means for the researcher to test for incomplete matching.
Sas Msi Company Export Import Records. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
From November 2023 to October 2024, SAS Scandinavian Airlines owned 17 and leased 70 aircraft in the Airbus A320 family. The largest number of aircraft owned or leased by Scandinavian Airlines belong to the Airbus A320 family, of which the airline operates 87 aircraft.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List NBvsPoi_FINAL.sas -- SAS code SSEAK98_FINAL.txt -- Harbor seal data used by SAS code Description The NBvsPoi_FINAL SAS program uses a SAS macro to analyze the data in SSEAK98_FINAL.txt. The SAS program and macro are commented for further explanation.
https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore the historical Whois records related to sas.download (Domain). Get insights into ownership history and changes over time.
In the period of November 2023 to October 2024, the SAS Group employed 6,421 men and 3,936 women. The largest group of employees, 3,900 people, was recorded in Denmark, although these numbers also include international employees outside Denmark, Sweden or Norway.
Scandinavian Airlines’ passenger numbers dropped by nearly three quarters between 2019 and 2021 to around 7.4 million passengers due to the coronavirus pandemic. The number of passengers on Scandinavian Airlines flights began rising again in the financial year 2022, totaling 17.9 million scheduled passengers that year. The positive trend persisted in the subsequent year, 2024, with an approximately 25.2 million passengers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These SAS files are sample code used for the Monte Carlo studies in a manuscript on statistical properties of four effect size measures for the mediated effect.Citation:Miočević, M., O’Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2016). The bias and efficiency of five effect size measures for mediation models. Under review at Behavior Research Methods.