Missoula County Cadastral Data ResourcesA snapshot of property and parcel data for July 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
Sanders County Cadastral Data ResourcesA snapshot of property and parcel data for July 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
Carbon County Cadastral Data ResourcesA snapshot of property and parcel data for June 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This data provides the integrated cadastral framework for the specified Canada Land. The cadastral framework consists of active and superseded cadastral parcel, roads, easements, administrative areas, active lines, points and annotations. The cadastral lines form the boundaries of the parcels. COGO attributes are associated to the lines and depict the adjusted framework of the cadastral fabric. The cadastral annotations consist of lot numbers, block numbers, township numbers, etc. The cadastral framework is compiled from Canada Lands Survey Records (CLSR), Registration Plans (RS) and Location Sketches (LS) archived in the Canada Lands Survey Records.
Sweet Grass County Cadastral Data Resources, a snapshot of property and parcel data for June 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
The polygon (vector) shapefiles represent Public Land Survey System (PLSS) sections, or 1-square mile areas of land, with information about Bureau of Land Management (BLM) land and mineral use authorizations for mineral materials. The land areas specified by BLM authorizations vary in size and orientation, and may cross one or more PLSS section boundaries. For spatial consistency, the information was aggregated to the square mile PLSS section boundary. The original source data from BLM Cases Recordation database (LR2000) were specific to the day they were generated (March 6, 2016) and subsequent data pulls will likely be different.
Stillwater County Cadastral Data ResourcesA snapshot of property and parcel data for June 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
The polygon (vector) shapefiles represent Public Land Survey System (PLSS) sections, or 1-square mile areas of land, with information about Bureau of Land Management (BLM) land and mineral use authorizations for non-energy solid minerals. The land areas specified by BLM authorizations vary in size and orientation, and may cross one or more PLSS section boundaries. For spatial consistency, the information was aggregated to the square mile PLSS section boundary. The original source data from BLM Cases Recordation database (LR2000) were specific to the day they were generated (March 6, 2016) and subsequent data pulls will likely be different.
The polygon (vector) shapefiles represent claim areas within Public Land Survey System (PLSS) sections aggregated by serial (claim) numbers with information about Bureau of Land Management (BLM) land and mineral use authorizations for oil and gas. The land areas specified by BLM authorizations vary in size and orientation, and may cross one or more PLSS section boundaries. For spatial consistency, the information was aggregated to the square mile PLSS section boundary and by serial numbers. The original source data from BLM Cases Recordation database (LR2000) were specific to the day they were generated (March 6, 2016) and subsequent data pulls will likely be different.
The polygon (vector) shapefiles represent claim areas within Public Land Survey System (PLSS) sections aggregated by serial (claim) numbers with information about Bureau of Land Management (BLM) land and mineral use authorizations for plans of operations and notices. The land areas specified by BLM authorizations vary in size and orientation, and may cross one or more PLSS section boundaries. For spatial consistency, the information was aggregated to the square mile PLSS section boundary and by serial numbers. The original source data from BLM Cases Recordation database (LR2000) were specific to the day they were generated (March 6, 2016) and subsequent data pulls will likely be different.
The polygon (vector) shapefiles represent claim areas within Public Land Survey System (PLSS) sections aggregated by serial (claim) numbers with information about Bureau of Land Management (BLM) land and mineral use authorizations for non-energy solid minerals. The land areas specified by BLM authorizations vary in size and orientation, and may cross one or more PLSS section boundaries. For spatial consistency, the information was aggregated to the square mile PLSS section boundary and by serial numbers. The original source data from BLM Cases Recordation database (LR2000) were specific to the day they were generated (March 6, 2016) and subsequent data pulls will likely be different.
In 2015, approximately 10 million acres of Federal lands across six western states were proposed for withdrawal from mineral entry by the Bureau of Land Management (BLM) in order to conserve habitat critical for the greater sage-grouse. As a result, the U.S. Geological Survey (USGS) launched the Sagebrush Mineral-Resource Assessment (SaMiRA) project in late-2015 to provide BLM with an assessment of the locatable minerals and an evaluation of the leaseable and saleable minerals within the proposed withdrawal areas. BLM provided Legacy Rehost 2000 System (LR2000) spatial data to the USGS on March 6, 2016 to help identify areas containing mineral leases and claims. The LR2000 system reports BLM land and mineral-use authorizations for oil, gas, and geothermal leasing, rights-of-ways, coal and other mineral development, land and mineral title, mining claims, withdrawals, classifications, and more on federal lands or on federal mineral estate. The spatial data provided here generalize the detailed LR2000 information and related boundaries (for example, small mine claim boundaries) to a larger Public Land Survey System (PLSS) section boundary. The tabular data are summarized by PLSS section and by BLM “serial numbers” (cases). The GIS data consist of polygon vector files whose boundaries are either the PLSS square-mile sections or the PLSS sections grouped by “serial number” to potentially larger areas. The shapefiles present coal, geothermal energy, mineral materials, mining claims, non-energy solid minerals, oil and gas, and plans of operations and notices information and can be used in a geographic information system (GIS) to show the general distribution and density of these BLM land authorizations. These datasets were used in the analysis of locatable, leasable, and salable minerals for the SaMiRA mineral-resource assessment.
The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.
Yellowstone County Cadastral Data ResourcesA snapshot of property and parcel data for June 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.
The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: http://ftp.geoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf
The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.
Background for creation of vector cadastral component of SM 5 is digital cadastral map (DKM) or cadastral map digitized (KMD). The cadastral component does not contain parcel numbers.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Fencing is a major anthropogenic feature affecting human relationships, ecological processes, and wildlife distributions and movements, but its impacts are difficult to quantify due to a widespread lack of spatial data. We created a fence model and compared outputs to a fence mapping approach using satellite imagery in two counties in southwest Montana, USA to advance fence data development for use in research and management. The model incorporated road, land cover, ownership, and grazing boundary spatial layers to predict fence locations. We validated the model using data collected on randomized road transects (n = 330). The model predicted 34,706.4 km of fences with a mean fence density of 0.93 km/km2 and a maximum density of 14.9 km/km2. We also digitized fences using Google Earth Pro in a random subset of our study area in survey townships (n = 50). The Google Earth approach showed greater agreement (K = 0.76) with known samples than the fence model (K = 0.56) yet was unable to map fences in forests and was significantly more time intensive. We also compared fence attributes by land ownership and land cover variables to assess factors that may influence fence specifications (e.g., wire heights) and types (e.g., number of barbed wires). Private lands were more likely to have fences with lower bottom wires and higher top wires than those on public lands with sample means at 22 cm and 26.4 cm, and 115.2 cm and 110.97, respectively. Both bottom wire means were well below recommended heights for ungulates navigating underneath fencing (≥ 46 cm), while top wire means were closer to the 107 cm maximum fence height recommendation. We found that both fence type and land ownership were correlated (χ2 = 45.52, df = 5, p = 0.001) as well as fence type and land cover type (χ2 = 140.73, df = 15, p = 0.001). We provide tools for estimating fence locations, and our novel fence type assessment demonstrates an opportunity for updated policy to encourage the adoption of “wildlife-friendlier” fencing standards to facilitate wildlife movement in the western U.S. while supporting rural livelihoods. Methods For the fence model and fence density layers, the data was adapted from publicly available spatial layers informed by local expert opinion in Beaverhead and Madison Counties, MT. Data used included Montana Department of Transportation road layers, land ownership data from Montana State Library cadastral database, land cover data from the 2019 Montana Department of Revenue Final Land Unit (FLU), and railroad data from the Montana State Library. The data was processed in ArcMap 10.6.1 to form a hierarchical predictive fence location and density GIS model. For the Google Earth mapped fences, data was collected by examining satellite imagery and tracing visible fence lines in Google Earth Pro version 7.3.3 (Google 2020) within the bounds of 50 random survey township polygons in Beaverhead and Madison Counties.
description: FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13); abstract: FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)
Missoula County Cadastral Data ResourcesA snapshot of property and parcel data for July 2022.Department of Revenue Orion SQL property record database provided as both an SQL database and as tables in a file geodatabase.File Geodatabase and Shapefile options for parcel polygon GIS data.Visit the Montana State Library Cadastral MSDI page for more information on cadastral data and Orion property database : MSDI Cadastral (mt.gov)The Montana Cadastral Framework shows the taxable parcels and tax-exempt parcels for most of Montana. The parcels contain selected information such as owner names, property and owner addresses, assessed value, agricultural use, and tax district information that were copied from the Montana Department of Revenue's ORION tax appraisal database. The data are maintained by the MT Department of Revenue, except for Ravalli, Silver Bow, Missoula, Flathead and Yellowstone counties that are maintained by the individual counties. The Revenue and county data are integrated by Montana State Library staff. Each parcel contains an attribute called ParcelID (geocode) that is the parcel identifier. View a pdf map of the counties that were updated this month here: https://ftpgeoinfo.msl.mt.gov/Data/Spatial/MSDI/Cadastral/Parcels/Statewide/MonthlyCadastralUpdateMap.pdf The parcel boundaries were aligned to fit with the Bureau of Land Management Geographic Coordinate Database (GCDB) of public land survey coordinates. Parcels whose legal descriptions consisted of aliquot parts of the public land survey system were created from the GCDB coordinates by selecting and, when necessary, subdividing public land survey entities. Other parcels were digitized from paper maps and the data from each map were transformed to fit with the appropriate GCDB boundaries.