The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
In 2023, about 26.9 percent of Asian private households in the U.S. had an annual income of 200,000 U.S. dollars and more. Comparatively, around 13.9 percent of Black households had an annual income under 15,000 U.S. dollars.
In 2024, the top ten percent in Brazil earned an average of 8,034 Brazilian reals per month before income taxes. This is more than 11 times the average income of the bottom half, which was 713 reals per month in that year.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Other Financial Information: Estimated Market Value of Owned Home by Deciles of Income Before Taxes: Fourth 10 Percent (31st to 40th Percentile) (CXU800721LB1505M) from 2014 to 2023 about owned, market value, information, percentile, tax, financial, income, housing, estimate, and USA.
https://data.gov.tw/licensehttps://data.gov.tw/license
Comprehensive tax calculation statistics table of various income amounts based on income percentile reporting. Unit: Amount (in thousand dollars)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The indicator is a measure of the inequality of income distribution. It is calculated as the ratio of total income received by the 20 % of the population with the highest income (the top quintile) to that received by the 20 % of the population with the lowest income (the bottom quintile).
This layer shows household income ranges and cutoffs. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households that make under $75,000 annually. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
These tables only cover individuals with some liability to tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
The poorest five percent of the population in Brazil received a monthly income of merely *** reals in 2024, with their jobs as their only source of income. By contrast, the average income of workers who fall within the 40 percent to 50 percent percentile, and from 50 percent to 60 percent are **** and **** Brazilian reals, respectively.
The bottom 50 percent in Argentina earned on average 15,057 U.S. dollars at purchasing power parity (PPP) before income taxes as of 2022, while individuals in the top one percent earned pre-tax more than 686,433 dollars. Looking at the percentage distribution of wealth in Argentina, the poorest half held 5.7 percent of the total in 2021. Moreover, the top one percent in the South American country accounted for 25.7 percent of the overall national wealth.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
The average pre-tax income of the top ten percent earners in Spain was over 95,500 euros at purchasing power parity (PPP) as of 2022, almost nine times more than the average income of the bottom half earners. Looking at the distribution of national income in Spain, the earnings of the least affluent half of the population equated to 21 percent of the total country income in 2022, 0.1 percentage points less than one decade earlier. Moreover, the top one percent of earners in Spain accounted for over ten percent of the overall national income.
In 2023 in France, the average net monthly full-time equivalent salary was ***** euros. That year, ** percent of the poorest French employees earned less than ***** euros per month. On the other hand, ** percent of the richest French employees received more than ***** euros. The French people who were part of the richest one percent of the working population earned a salary over ***** euros per month.
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income by race, while also extending our analysis to three generations. Our two stage least squares regressions reveal that grandparental and parental wealth and the younger generation’s household income is strongly positively correlated. We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the disparity in income between black and white respondents is mainly attributable to differences in family background. In context, differences in family background are stronger than differences in educational attainment. When we examine different income percentiles, however, we find that the effect of grandparental and parental wealth endowment is much stronger at the top of the income distribution. These findings indicate that wealth is an important source of income inequality.
https://data.gov.tw/licensehttps://data.gov.tw/license
Comprehensive income tax items 20th percentile statistical table based on the amount of tax calculation deductions, unit: amount (thousand yuan)
This layer shows household income ranges and cutoffs. This is shown by state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households that make under $75,000 annually. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2014-2018ACS Table(s): B19001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 31, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
https://data.gov.tw/licensehttps://data.gov.tw/license
Composite tax calculated by proposed tax amounts itemized deductions declared statistical table Unit: Amount (thousand yuan)
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HM91JNhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HM91JN
This dataset contains replication files for "Is the United States Still a Land of Opportunity? Recent Trends in Intergenerational Mobility" by Raj Chetty, Nathaniel Hendren, Patrick Kline, Emmanuel Saez, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/recentintergenerationalmobility/. A summary of the related publication follows. We present new evidence on trends in intergenerational mobility in the U.S. using administrative earnings records. We find that percentile rank-based measures of intergenerational mobility have remained extremely stable for the 1971-1993 birth cohorts. For children born between 1971 and 1986, we measure intergenerational mobility based on the correlation between parent and child income percentile ranks. For more recent cohorts, we measure mobility as the correlation between a child’s probability of attending college and her parents’ income rank. We also calculate transition probabilities, such as a child’s chances of reaching the top quintile of the income distribution starting from the bottom quintile. Based on all of these measures, we find that children entering the labor market today have the same chances of moving up in the income distribution (relative to their parents) as children born in the 1970s. However, because inequality has risen, the consequences of the “birth lottery” – the parents to whom a child is born – are larger today than in the past. The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the US Treasury Department or the Internal Revenue Service or the National Bureau of Economic Research.
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.