56 datasets found
  1. a

    Find Outliers GRM

    • hub.arcgis.com
    Updated Aug 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tippecanoe County Assessor Hub Community (2020). Find Outliers GRM [Dataset]. https://hub.arcgis.com/datasets/45934af390204d408d9d075fede51f6c
    Explore at:
    Dataset updated
    Aug 7, 2020
    Dataset authored and provided by
    Tippecanoe County Assessor Hub Community
    Area covered
    Description

    The following report outlines the workflow used to optimize your Find Outliers result:Initial Data Assessment.There were 721 valid input features.GRM Properties:Min0.0000Max157.0200Mean9.1692Std. Dev.8.4220There were 4 outlier locations; these will not be used to compute the optimal fixed distance band.Scale of AnalysisThe optimal fixed distance band selected was based on peak clustering found at 1894.5039 Meters.Outlier AnalysisCreating the random reference distribution with 499 permutations.There are 248 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.There are 30 statistically significant high outlier features.There are 7 statistically significant low outlier features.There are 202 features part of statistically significant low clusters.There are 9 features part of statistically significant high clusters.OutputPink output features are part of a cluster of high GRM values.Light Blue output features are part of a cluster of low GRM values.Red output features represent high outliers within a cluster of low GRM values.Blue output features represent low outliers within a cluster of high GRM values.

  2. f

    Data from: Outlier detection in cylindrical data based on Mahalanobis...

    • tandf.figshare.com
    text/x-tex
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prashant S. Dhamale; Akanksha S. Kashikar (2025). Outlier detection in cylindrical data based on Mahalanobis distance [Dataset]. http://doi.org/10.6084/m9.figshare.24092089.v1
    Explore at:
    text/x-texAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Prashant S. Dhamale; Akanksha S. Kashikar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cylindrical data are bivariate data formed from the combination of circular and linear variables. Identifying outliers is a crucial step in any data analysis work. This paper proposes a new distribution-free procedure to detect outliers in cylindrical data using the Mahalanobis distance concept. The use of Mahalanobis distance incorporates the correlation between the components of the cylindrical distribution, which had not been accounted for in the earlier papers on outlier detection in cylindrical data. The threshold for declaring an observation to be an outlier can be obtained via parametric or non-parametric bootstrap, depending on whether the underlying distribution is known or unknown. The performance of the proposed method is examined via extensive simulations from the Johnson-Wehrly distribution. The proposed method is applied to two real datasets, and the outliers are identified in those datasets.

  3. a

    Find Outliers Minnesota Hospitals

    • umn.hub.arcgis.com
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2020). Find Outliers Minnesota Hospitals [Dataset]. https://umn.hub.arcgis.com/maps/UMN::find-outliers-minnesota-hospitals
    Explore at:
    Dataset updated
    May 6, 2020
    Dataset authored and provided by
    University of Minnesota
    Area covered
    Description

    The following report outlines the workflow used to optimize your Find Outliers result:Initial Data Assessment.There were 137 valid input features.There were 4 outlier locations; these will not be used to compute the polygon cell size.Incident AggregationThe polygon cell size was 49251.0000 Meters.The aggregation process resulted in 72 weighted areas.Incident Count Properties:Min1.0000Max21.0000Mean1.9028Std. Dev.2.4561Scale of AnalysisThe optimal fixed distance band selected was based on peak clustering found at 94199.9365 Meters.Outlier AnalysisCreating the random reference distribution with 499 permutations.There are 3 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.There are 2 statistically significant high outlier features.There are 0 statistically significant low outlier features.There are 0 features part of statistically significant low clusters.There are 1 features part of statistically significant high clusters.OutputPink output features are part of a cluster of high values.Light Blue output features are part of a cluster of low values.Red output features represent high outliers within a cluster of low values.Blue output features represent low outliers within a cluster of high values.

  4. d

    Data from: Distributed Anomaly Detection using 1-class SVM for Vertically...

    • catalog.data.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Anomaly Detection using 1-class SVM for Vertically Partitioned Data [Dataset]. https://catalog.data.gov/dataset/distributed-anomaly-detection-using-1-class-svm-for-vertically-partitioned-data
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).

  5. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  6. f

    Identifying outliers in asset pricing data with a new weighted forward...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Aronne; Luigi Grossi; Aureliano Angel Bressan (2023). Identifying outliers in asset pricing data with a new weighted forward search estimator [Dataset]. http://doi.org/10.6084/m9.figshare.11804652.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Alexandre Aronne; Luigi Grossi; Aureliano Angel Bressan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The purpose of this work is to present the Weighted Forward Search (FSW) method for the detection of outliers in asset pricing data. This new estimator, which is based on an algorithm that downweights the most anomalous observations of the dataset, is tested using both simulated and empirical asset pricing data. The impact of outliers on the estimation of asset pricing models is assessed under different scenarios, and the results are evaluated with associated statistical tests based on this new approach. Our proposal generates an alternative procedure for robust estimation of portfolio betas, allowing for the comparison between concurrent asset pricing models. The algorithm, which is both efficient and robust to outliers, is used to provide robust estimates of the models’ parameters in a comparison with traditional econometric estimation methods usually used in the literature. In particular, the precision of the alphas is highly increased when the Forward Search (FS) method is used. We use Monte Carlo simulations, and also the well-known dataset of equity factor returns provided by Prof. Kenneth French, consisting of the 25 Fama-French portfolios on the United States of America equity market using single and three-factor models, on monthly and annual basis. Our results indicate that the marginal rejection of the Fama-French three-factor model is influenced by the presence of outliers in the portfolios, when using monthly returns. In annual data, the use of robust methods increases the rejection level of null alphas in the Capital Asset Pricing Model (CAPM) and the Fama-French three-factor model, with more efficient estimates in the absence of outliers and consistent alphas when outliers are present.

  7. i

    Data from: An Effective Algorithm of Outlier Correction in Space-time Radar...

    • ieee-dataport.org
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yongchan Kim (2024). An Effective Algorithm of Outlier Correction in Space-time Radar Rainfall Data Based on the Iterative Localized Analysis [Dataset]. https://ieee-dataport.org/documents/effective-algorithm-outlier-correction-space-time-radar-rainfall-data-based-iterative
    Explore at:
    Dataset updated
    Feb 13, 2024
    Authors
    Yongchan Kim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ensuring accurate representations in spatial and temporal data analyses.

  8. h

    mnist-outlier

    • huggingface.co
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Renumics (2023). mnist-outlier [Dataset]. https://huggingface.co/datasets/renumics/mnist-outlier
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 16, 2023
    Dataset authored and provided by
    Renumics
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for "mnist-outlier"

    📚 This dataset is an enriched version of the MNIST Dataset. The workflow is described in the medium article: Changes of Embeddings during Fine-Tuning of Transformers.

      Explore the Dataset
    

    The open source data curation tool Renumics Spotlight allows you to explorer this dataset. You can find a Hugging Face Space running Spotlight with this dataset here: https://huggingface.co/spaces/renumics/mnist-outlier.

    Or you can explorer it locally:… See the full description on the dataset page: https://huggingface.co/datasets/renumics/mnist-outlier.

  9. Anomaly Detection Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Anomaly Detection Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Spain, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/anomaly-detection-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Anomaly Detection Market Size 2025-2029

    The anomaly detection market size is forecast to increase by USD 4.44 billion at a CAGR of 14.4% between 2024 and 2029.

    The market is experiencing significant growth, particularly in the BFSI sector, as organizations increasingly prioritize identifying and addressing unusual patterns or deviations from normal business operations. The rising incidence of internal threats and cyber frauds necessitates the implementation of advanced anomaly detection tools to mitigate potential risks and maintain security. However, implementing these solutions comes with challenges, primarily infrastructural requirements. Ensuring compatibility with existing systems, integrating new technologies, and training staff to effectively utilize these tools pose significant hurdles for organizations.
    Despite these challenges, the potential benefits of anomaly detection, such as improved risk management, enhanced operational efficiency, and increased security, make it an essential investment for businesses seeking to stay competitive and agile in today's complex and evolving threat landscape. Companies looking to capitalize on this market opportunity must carefully consider these challenges and develop strategies to address them effectively. Cloud computing is a key trend in the market, as cloud-based solutions offer quick deployment, flexibility, and scalability.
    

    What will be the Size of the Anomaly Detection Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic and evolving market, advanced technologies such as resource allocation, linear regression, pattern recognition, and support vector machines are increasingly being adopted for automated decision making. Businesses are leveraging these techniques to enhance customer experience through behavioral analytics, object detection, and sentiment analysis. Machine learning algorithms, including random forests, naive Bayes, decision trees, clustering algorithms, and k-nearest neighbors, are essential tools for risk management and compliance monitoring. AI-powered analytics, time series forecasting, and predictive modeling are revolutionizing business intelligence, while process optimization is achieved through the application of decision support systems, natural language processing, and predictive analytics.
    Computer vision, image recognition, logistic regression, and operational efficiency are key areas where principal component analysis and artificial technoogyneural networks contribute significantly. Speech recognition and operational efficiency are also benefiting from these advanced technologies, enabling businesses to streamline processes and improve overall performance.
    

    How is this Anomaly Detection Industry segmented?

    The anomaly detection industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      Cloud
      On-premises
    
    
    Component
    
      Solution
      Services
    
    
    End-user
    
      BFSI
      IT and telecom
      Retail and e-commerce
      Manufacturing
      Others
    
    
    Technology
    
      Big data analytics
      AI and ML
      Data mining and business intelligence
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Spain
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The cloud segment is estimated to witness significant growth during the forecast period. The market is witnessing significant growth due to the increasing adoption of advanced technologies such as machine learning models, statistical methods, and real-time monitoring. These technologies enable the identification of anomalous behavior in real-time, thereby enhancing network security and data privacy. Anomaly detection algorithms, including unsupervised learning, reinforcement learning, and deep learning networks, are used to identify outliers and intrusions in large datasets. Data security is a major concern, leading to the adoption of data masking, data pseudonymization, data de-identification, and differential privacy.

    Data leakage prevention and incident response are critical components of an effective anomaly detection system. False positive and false negative rates are essential metrics to evaluate the performance of these systems. Time series analysis and concept drift are important techniques used in anomaly detection. Data obfuscation, data suppression, and data aggregation are other strategies employed to maintain data privacy. Companies such as Anodot, Cisco Systems Inc, IBM Corp, and SAS Institute Inc offer both cloud-based and on-premises anomaly detection solutions. These soluti

  10. Data from: Outlier classification using autoencoders: application for...

    • osti.gov
    Updated Jun 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center (2021). Outlier classification using autoencoders: application for fluctuation driven flows in fusion plasmas [Dataset]. http://doi.org/10.7910/DVN/SKEHRJ
    Explore at:
    Dataset updated
    Jun 2, 2021
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
    Description

    Understanding the statistics of fluctuation driven flows in the boundary layer of magnetically confined plasmas is desired to accurately model the lifetime of the vacuum vessel components. Mirror Langmuir probes (MLPs) are a novel diagnostic that uniquely allow us to sample the plasma parameters on a time scale shorter than the characteristic time scale of their fluctuations. Sudden large-amplitude fluctuations in the plasma degrade the precision and accuracy of the plasma parameters reported by MLPs for cases in which the probe bias range is of insufficient amplitude. While some data samples can readily be classified as valid and invalid, we find that such a classification may be ambiguous for up to 40% of data sampled for the plasma parameters and bias voltages considered in this study. In this contribution, we employ an autoencoder (AE) to learn a low-dimensional representation of valid data samples. By definition, the coordinates in this space are the features that mostly characterize valid data. Ambiguous data samples are classified in this space using standard classifiers for vectorial data. In this way, we avoid defining complicated threshold rules to identify outliers, which require strong assumptions and introduce biases in the analysis. By removing the outliers that are identified in the latent low-dimensional space of the AE, we find that the average conductive and convective radial heat fluxes are between approximately 5% and 15% lower as when removing outliers identified by threshold values. For contributions to the radial heat flux due to triple correlations, the difference is up to 40%.

  11. f

    Data from: A Diagnostic Procedure for Detecting Outliers in Linear...

    • tandf.figshare.com
    • figshare.com
    txt
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongjun You; Michael Hunter; Meng Chen; Sy-Miin Chow (2024). A Diagnostic Procedure for Detecting Outliers in Linear State–Space Models [Dataset]. http://doi.org/10.6084/m9.figshare.12162075.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 9, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Dongjun You; Michael Hunter; Meng Chen; Sy-Miin Chow
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Outliers can be more problematic in longitudinal data than in independent observations due to the correlated nature of such data. It is common practice to discard outliers as they are typically regarded as a nuisance or an aberration in the data. However, outliers can also convey meaningful information concerning potential model misspecification, and ways to modify and improve the model. Moreover, outliers that occur among the latent variables (innovative outliers) have distinct characteristics compared to those impacting the observed variables (additive outliers), and are best evaluated with different test statistics and detection procedures. We demonstrate and evaluate the performance of an outlier detection approach for multi-subject state-space models in a Monte Carlo simulation study, with corresponding adaptations to improve power and reduce false detection rates. Furthermore, we demonstrate the empirical utility of the proposed approach using data from an ecological momentary assessment study of emotion regulation together with an open-source software implementation of the procedures.

  12. a

    Find Outliers Percent of households with income below the Federal Poverty...

    • uscssi.hub.arcgis.com
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Find Outliers Percent of households with income below the Federal Poverty Level [Dataset]. https://uscssi.hub.arcgis.com/maps/USCSSI::find-outliers-percent-of-households-with-income-below-the-federal-poverty-level
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    The following report outlines the workflow used to optimize your Find Outliers result:Initial Data Assessment.There were 1684 valid input features.POVERTY Properties:Min0.0000Max91.8000Mean18.9902Std. Dev.12.7152There were 22 outlier locations; these will not be used to compute the optimal fixed distance band.Scale of AnalysisThe optimal fixed distance band was based on the average distance to 30 nearest neighbors: 3709.0000 Meters.Outlier AnalysisCreating the random reference distribution with 499 permutations.There are 1155 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.There are 68 statistically significant high outlier features.There are 84 statistically significant low outlier features.There are 557 features part of statistically significant low clusters.There are 446 features part of statistically significant high clusters.OutputPink output features are part of a cluster of high POVERTY values.Light Blue output features are part of a cluster of low POVERTY values.Red output features represent high outliers within a cluster of low POVERTY values.Blue output features represent low outliers within a cluster of high POVERTY values.

  13. Effect sizes calculated using MD and MC, excluding outliers

    • dro.deakin.edu.au
    • researchdata.edu.au
    txt
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Don Driscoll (2024). Effect sizes calculated using MD and MC, excluding outliers [Dataset]. http://doi.org/10.26187/deakin.26264351.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    Deakin Universityhttp://www.deakin.edu.au/
    Authors
    Don Driscoll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Effect sizes calculated using mean difference for burnt-unburnt study designs and mean change for before-after desings. Outliers, as defined in the methods section of the paper, were excluded prior to calculating effect sizes.

  14. d

    Manual snow course observations, raw met data, raw snow depth observations,...

    • catalog.data.gov
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Adaptation Science Centers (2024). Manual snow course observations, raw met data, raw snow depth observations, locations, and associated metadata for Oregon sites [Dataset]. https://catalog.data.gov/dataset/manual-snow-course-observations-raw-met-data-raw-snow-depth-observations-locations-and-ass
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Climate Adaptation Science Centers
    Area covered
    Oregon
    Description

    OSU_SnowCourse Summary: Manual snow course observations were collected over WY 2012-2014 from four paired forest-open sites chosen to span a broad elevation range. Study sites were located in the upper McKenzie (McK) River watershed, approximately 100 km east of Corvallis, Oregon, on the western slope of the Cascade Range and in the Middle Fork Willamette (MFW) watershed, located to the south of the McKenzie. The sites were designated based on elevation, with a range of 1110-1480 m. Distributed snow depth and snow water equivalent (SWE) observations were collected via monthly manual snow courses from 1 November through 1 April and bi-weekly thereafter. Snow courses spanned 500 m of forested terrain and 500 m of adjacent open terrain. Snow depth observations were collected approximately every 10 m and SWE was measured every 100 m along the snow courses with a federal snow sampler. These data are raw observations and have not been quality controlled in any way. Distance along the transect was estimated in the field. OSU_SnowDepth Summary: 10-minute snow depth observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meterological stations were located in the approximate center of each forest or open snow course transect. These data have undergone basic quality control. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN flags for missing data to NA, and added site attributes such as site name and cover. We replaced positive values with NA, since snow depth values in raw data are negative (i.e., flipped, with some correction to use the height of the sensor as zero). Thus, positive snow depth values in the raw data equal negative snow depth values. Second, the sign of the data was switched to make them positive. Then, the smooth.m (MATLAB) function was used to roughly smooth the data, with a moving window of 50 points. Third, outliers were removed. All values higher than the smoothed values +10, were replaced with NA. In some cases, further single point outliers were removed. OSU_Met Summary: Raw, 10-minute meteorological observations collected at OSU met stations in the upper McKenzie River Watershed and the Middle Fork Willamette Watershed during Water Years 2012-2014. Each meterological tower was deployed to represent either a forested or an open area at a particular site, and generally the locations were paired, with a meterological station deployed in the forest and in the open area at a single site. These data were collected in conjunction with manual snow course observations, and the meteorological stations were located in the approximate center of each forest or open snow course transect. These stations were deployed to collect numerous meteorological variables, of which snow depth and wind speed are included here. These data are raw datalogger output and have not been quality controlled in any way. See manufacturer specifications for individual instruments to determine sensor accuracy. This file was compiled from individual raw data files (named "RawData.txt" within each site and year directory) provided by OSU, along with metadata of site attributes. We converted the Excel-based timestamp (seconds since origin) to a date, changed the NaN and 7999 flags for missing data to NA, and added site attributes such as site name and cover. OSU_Location Summary: Location Metadata for manual snow course observations and meteorological sensors. These data are compiled from GPS data for which the horizontal accuracy is unknown, and from processed hemispherical photographs. They have not been quality controlled in any way.

  15. f

    Data from: Methodology to filter out outliers in high spatial density data...

    • scielo.figshare.com
    jpeg
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Felipe Maldaner; José Paulo Molin; Mark Spekken (2023). Methodology to filter out outliers in high spatial density data to improve maps reliability [Dataset]. http://doi.org/10.6084/m9.figshare.14305658.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELO journals
    Authors
    Leonardo Felipe Maldaner; José Paulo Molin; Mark Spekken
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The considerable volume of data generated by sensors in the field presents systematic errors; thus, it is extremely important to exclude these errors to ensure mapping quality. The objective of this research was to develop and test a methodology to identify and exclude outliers in high-density spatial data sets, determine whether the developed filter process could help decrease the nugget effect and improve the spatial variability characterization of high sampling data. We created a filter composed of a global, anisotropic, and an anisotropic local analysis of data, which considered the respective neighborhood values. For that purpose, we used the median to classify a given spatial point into the data set as the main statistical parameter and took into account its neighbors within a radius. The filter was tested using raw data sets of corn yield, soil electrical conductivity (ECa), and the sensor vegetation index (SVI) in sugarcane. The results showed an improvement in accuracy of spatial variability within the data sets. The methodology reduced RMSE by 85 %, 97 %, and 79 % in corn yield, soil ECa, and SVI respectively, compared to interpolation errors of raw data sets. The filter excluded the local outliers, which considerably reduced the nugget effects, reducing estimation error of the interpolated data. The methodology proposed in this work had a better performance in removing outlier data when compared to two other methodologies from the literature.

  16. n

    Anolis carolinensis character displacement SNP

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Douglas Crawford (2023). Anolis carolinensis character displacement SNP [Dataset]. http://doi.org/10.5061/dryad.qbzkh18ks
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 27, 2023
    Dataset provided by
    University of Miami
    Authors
    Douglas Crawford
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Here are six files that provide details for all 44,120 identified single nucleotide polymorphisms (SNPs) or the 215 outlier SNPs associated with the evolution of rapid character displacement among replicate islands with (2Spp) and without competition (1Spp) between two Anolis species. On 2Spp islands, A. carolinensis occurs higher in trees and have evolved larger toe pads. Among 1Spp and 2Spp island populations, we identify 44,120 SNPs, with 215-outlier SNPs with improbably large FST values, low nucleotide variation, greater linkage than expected, and these SNPs are enriched for animal walking behavior. Thus, we conclude that these 215-outliers are evolving by natural selection in response to the phenotypic convergent evolution of character displacement. There are two, non-mutually exclusive perspective of these nucleotide variants. One is character displacement is convergent: all 215 outlier SNPs are shared among 3 out of 5 2Spp island and 24% of outlier SNPS are shared among all five out of five 2Spp island. Second, character displacement is genetically redundant because the allele frequencies in one or more 2Spp are similar to 1Spp islands: among one or more 2Spp islands 33% of outlier SNPS are within the range of 1Spp MiAF and 76% of outliers are more similar to 1Spp island than mean MiAF of 2Spp islands. Focusing on convergence SNP is scientifically more robust, yet it distracts from the perspective of multiple genetic solutions that enhances the rate and stability of adaptive change. The six files include: a description of eight islands, details of 94 individuals, and four files on SNPs. The four SNP files include the VCF files for 94 individuals with 44KSNPs and two files (Excel sheet/tab-delimited file) with FST, p-values and outlier status for all 44,120 identified single nucleotide polymorphisms (SNPs) associated with the evolution of rapid character displacement. The sixth file is a detailed file on the 215 outlier SNPs. Complete sequence data is available at Bioproject PRJNA833453, which including samples not included in this study. The 94 individuals used in this study are described in “Supplemental_Sample_description.txt” Methods Anoles and genomic DNA: Tissue or DNA for 160 Anolis carolinensis and 20 A. sagrei samples were provided by the Museum of Comparative Zoology at Harvard University (Table S2). Samples were previously used to examine evolution of character displacement in native A. carolinensis following invasion by A. sagrei onto man-made spoil islands in Mosquito Lagoon Florida (Stuart et al. 2014). One hundred samples were genomic DNAs, and 80 samples were tissues (terminal tail clip, Table S2). Genomic DNA was isolated from 80 of 160 A. carolinensis individuals (MCZ, Table S2) using a custom SPRI magnetic bead protocol (Psifidi et al. 2015). Briefly, after removing ethanol, tissues were placed in 200 ul of GH buffer (25 mM Tris- HCl pH 7.5, 25 mM EDTA, , 2M GuHCl Guanidine hydrochloride, G3272 SIGMA, 5 mM CaCl2, 0.5% v/v Triton X-100, 1% N-Lauroyl-Sarcosine) with 5% per volume of 20 mg/ml proteinase K (10 ul/200 ul GH) and digested at 55º C for at least 2 hours. After proteinase K digestion, 100 ul of 0.1% carboxyl-modified Sera-Mag Magnetic beads (Fisher Scientific) resuspended in 2.5 M NaCl, 20% PEG were added and allowed to bind the DNA. Beads were subsequently magnetized and washed twice with 200 ul 70% EtOH, and then DNA was eluted in 100 ul 0.1x TE (10 mM Tris, 0.1 mM EDTA). All DNA samples were gel electrophoresed to ensure high molecular mass and quantified by spectrophotometry and fluorescence using Biotium AccuBlueTM High Sensitivity dsDNA Quantitative Solution according to manufacturer’s instructions. Genotyping-by-sequencing (GBS) libraries were prepared using a modified protocol after Elshire et al. (Elshire et al. 2011). Briefly, high-molecular-weight genomic DNA was aliquoted and digested using ApeKI restriction enzyme. Digests from each individual sample were uniquely barcoded, pooled, and size selected to yield insert sizes between 300-700 bp (Borgstrom et al. 2011). Pooled libraries were PCR amplified (15 cycles) using custom primers that extend into the genomic DNA insert by 3 bases (CTG). Adding 3 extra base pairs systematically reduces the number of sequenced GBS tags, ensuring sufficient sequencing depth. The final library had a mean size of 424 bp ranging from 188 to 700 bp . Anolis SNPs: Pooled libraries were sequenced on one lane on the Illumina HiSeq 4000 in 2x150 bp paired-end configuration, yielding approximately 459 million paired-end reads ( ~138 Gb). The medium Q-Score was 42 with the lower 10% Q-Scores exceeding 32 for all 150 bp. The initial library contained 180 individuals with 8,561,493 polymorphic sites. Twenty individuals were Anolis sagrei, and two individuals (Yan 1610 & Yin 1411) clustered with A. sagrei and were not used to define A. carolinesis’ SNPs. Anolis carolinesis reads were aligned to the Anolis carolinensis genome (NCBI RefSeq accession number:/GCF_000090745.1_AnoCar2.0). Single nucleotide polymorphisms (SNPs) for A. carolinensis were called using the GBeaSy analysis pipeline (Wickland et al. 2017) with the following filter settings: minimum read length of 100 bp after barcode and adapter trimming, minimum phred-scaled variant quality of 30 and minimum read depth of 5. SNPs were further filtered by requiring SNPs to occur in > 50% of individuals, and 66 individuals were removed because they had less than 70% of called SNPs. These filtering steps resulted in 51,155 SNPs among 94 individuals. Final filtering among 94 individuals required all sites to be polymorphic (with fewer individuals, some sites were no longer polymorphic) with a maximum of 2 alleles (all are bi-allelic), minimal allele frequency 0.05, and He that does not exceed HWE (FDR <0.01). SNPs with large He were removed (2,280 SNPs). These SNPs with large significant heterozygosity may result from aligning paralogues (different loci), and thus may not represent polymorphisms. No SNPs were removed with low He (due to possible demography or other exceptions to HWE). After filtering, 94 individual yielded 44,120 SNPs. Thus, the final filtered SNP data set was 44K SNPs from 94 indiviuals. Statistical Analyses: Eight A. carolinensis populations were analyzed: three populations from islands with native species only (1Spp islands) and 5 populations from islands where A. carolinesis co-exist with A. sagrei (2Spp islands, Table 1, Table S1). Most analyses pooled the three 1Spp islands and contrasted these with the pooled five 2Spp islands. Two approaches were used to define SNPs with unusually large allele frequency differences between 1Spp and 2Spp islands: 1) comparison of FST values to random permutations and 2) a modified FDIST approach to identify outlier SNPs with large and statistically unlikely FST values. Random Permutations: FST values were calculated in VCFTools (version 4.2, (Danecek et al. 2011)) where the p-value per SNP were defined by comparing FST values to 1,000 random permutations using a custom script (below). Basically, individuals and all their SNPs were randomly assigned to one of eight islands or to 1Spp versus 2Spp groups. The sample sizes (55 for 2Spp and 39 for 1Spp islands) were maintained. FST values were re-calculated for each 1,000 randomizations using VCFTools. Modified FDIST: To identify outlier SNPs with statistically large FST values, a modified FDIST (Beaumont and Nichols 1996) was implemented in Arlequin (Excoffier et al. 2005). This modified approach applies 50,000 coalescent simulations using hierarchical population structure, in which demes are arranged into k groups of d demes and in which migration rates between demes are different within and between groups. Unlike the finite island models, which have led to large frequencies of false positive because populations share different histories (Lotterhos and Whitlock 2014), the hierarchical island model avoids these false positives by avoiding the assumption of similar ancestry (Excoffier et al. 2009). References Beaumont, M. A. and R. A. Nichols. 1996. Evaluating loci for use in the genetic analysis of population structure. P Roy Soc B-Biol Sci 263:1619-1626. Borgstrom, E., S. Lundin, and J. Lundeberg. 2011. Large scale library generation for high throughput sequencing. PLoS One 6:e19119. Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. Cingolani, P., A. Platts, L. Wang le, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, and D. M. Ruden. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80-92. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and G. Genomes Project Analysis. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. Earl, D. A. and B. M. vonHoldt. 2011. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359-361. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611-2620. Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298. Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis.

  17. g

    DISTRIBUTED ANOMALY DETECTION USING SATELLITE DATA FROM MULTIPLE MODALITIES

    • gimi9.com
    • data.nasa.gov
    • +3more
    Updated Sep 24, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). DISTRIBUTED ANOMALY DETECTION USING SATELLITE DATA FROM MULTIPLE MODALITIES [Dataset]. https://gimi9.com/dataset/data-gov_distributed-anomaly-detection-using-satellite-data-from-multiple-modalities/
    Explore at:
    Dataset updated
    Sep 24, 2010
    Description

    DISTRIBUTED ANOMALY DETECTION USING SATELLITE DATA FROM MULTIPLE MODALITIES KANISHKA BHADURI*, KAMALIKA DAS**, AND PETR VOTAVA*** Abstract. There has been a tremendous increase in the volume of Earth Science data over the last decade from modern satellites, in-situ sensors and different climate models. All these datasets need to be co-analyzed for finding interesting patterns or for searching for extremes or outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets ate physically stored at different geographical locations. Moving these petabytes of data over the network to a single location may waste a lot of bandwidth, and can take days to finish. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the global data without moving all the data to one location. The algorithm is highly accurate (close to 99%) and requires centralizing less than 5% of the entire dataset. We demonstrate the performance of the algorithm using data obtained from the NASA MODerate-resolution Imaging Spectroradiometer (MODIS) satellite images.

  18. S

    Water quality test data

    • scidb.cn
    Updated Oct 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HuiyunFeng; JingangJiang (2022). Water quality test data [Dataset]. http://doi.org/10.57760/sciencedb.05375
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 26, 2022
    Dataset provided by
    Science Data Bank
    Authors
    HuiyunFeng; JingangJiang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Outliers are often present in large datasets of water quality monitoring time series data. A method of combining the sliding window technique with Dixon detection criterion for the automatic detection of outliers in time series data is limited by the empirical determination of sliding window sizes. The scientific determination of the optimal sliding window size is very meaningful research work. This paper presents a new Monte Carlo Search Method (MCSM) based on random sampling to optimize the size of the sliding window, which fully takes advantage of computers and statistics. The MCSM was applied in a case study to automatic monitoring data of water quality factors in order to test its validity and usefulness. The results of comparing the accuracy and efficiency of the MCSM show that the new method in this paper is scientific and effective. The experimental results show that, at different sample sizes, the average accuracy is between 58.70% and 75.75%, and the average computation time increase is between 17.09% and 45.53%. In the era of big data in environmental monitoring, the proposed new methods can meet the required accuracy of outlier detection and improve the efficiency of calculation.

  19. Data from: Spatial detection of outlier loci with Moran eigenvector maps...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helene H. Wagner; Mariana Chávez-Pesqueira; Brenna R. Forester; Helene H. Wagner; Mariana Chávez-Pesqueira; Brenna R. Forester (2022). Data from: Spatial detection of outlier loci with Moran eigenvector maps (MEM) [Dataset]. http://doi.org/10.5061/dryad.b12kk
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Helene H. Wagner; Mariana Chávez-Pesqueira; Brenna R. Forester; Helene H. Wagner; Mariana Chávez-Pesqueira; Brenna R. Forester
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The spatial signature of microevolutionary processes structuring genetic variation may play an important role in the detection of loci under selection. However, the spatial location of samples has not yet been used to quantify this. Here, we present a new two-step method of spatial outlier detection at the individual and deme levels using the power spectrum of Moran eigenvector maps (MEM). The MEM power spectrum quantifies how the variation in a variable, such as the frequency of an allele at a SNP locus, is distributed across a range of spatial scales defined by MEM spatial eigenvectors. The first step (Moran spectral outlier detection: MSOD) uses genetic and spatial information to identify outlier loci by their unusual power spectrum. The second step uses Moran spectral randomization (MSR) to test the association between outlier loci and environmental predictors, accounting for spatial autocorrelation. Using simulated data from two published papers, we tested this two-step method in different scenarios of landscape configuration, selection strength, dispersal capacity and sampling design. Under scenarios that included spatial structure, MSOD alone was sufficient to detect outlier loci at the individual and deme levels without the need for incorporating environmental predictors. Follow-up with MSR generally reduced (already low) false-positive rates, though in some cases led to a reduction in power. The results were surprisingly robust to differences in sample size and sampling design. Our method represents a new tool for detecting potential loci under selection with individual-based and population-based sampling by leveraging spatial information that has hitherto been neglected.

  20. Superstore Sales Analysis

    • kaggle.com
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tippecanoe County Assessor Hub Community (2020). Find Outliers GRM [Dataset]. https://hub.arcgis.com/datasets/45934af390204d408d9d075fede51f6c

Find Outliers GRM

Explore at:
Dataset updated
Aug 7, 2020
Dataset authored and provided by
Tippecanoe County Assessor Hub Community
Area covered
Description

The following report outlines the workflow used to optimize your Find Outliers result:Initial Data Assessment.There were 721 valid input features.GRM Properties:Min0.0000Max157.0200Mean9.1692Std. Dev.8.4220There were 4 outlier locations; these will not be used to compute the optimal fixed distance band.Scale of AnalysisThe optimal fixed distance band selected was based on peak clustering found at 1894.5039 Meters.Outlier AnalysisCreating the random reference distribution with 499 permutations.There are 248 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.There are 30 statistically significant high outlier features.There are 7 statistically significant low outlier features.There are 202 features part of statistically significant low clusters.There are 9 features part of statistically significant high clusters.OutputPink output features are part of a cluster of high GRM values.Light Blue output features are part of a cluster of low GRM values.Red output features represent high outliers within a cluster of low GRM values.Blue output features represent low outliers within a cluster of high GRM values.

Search
Clear search
Close search
Google apps
Main menu