Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Distance Calculation is a dataset for object detection tasks - it contains Vehicles annotations for 4,056 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Facebook
TwitterThis dataset consists of mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models.
## Example questions
Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
Answer: 4
Question: Calculate -841880142.544 + 411127.
Answer: -841469015.544
Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
Answer: 54*a - 30
It contains 2 million (question, answer) pairs per module, with questions limited to 160 characters in length, and answers to 30 characters in length. Note the training data for each question type is split into "train-easy", "train-medium", and "train-hard". This allows training models via a curriculum. The data can also be mixed together uniformly from these training datasets to obtain the results reported in the paper. Categories:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Golf Ball Distance Calculation is a dataset for object detection tasks - it contains Golf Balls annotations for 318 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This mini dataset is having 2 columns for calculating the braking distance of a car i.e., the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop.
Facebook
Twitterhttp://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
The Traveling Salesperson Problem (TSP) is a class problem of computer science that seeks to find the shortest route between a group of cities. It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.
https://data.heatonresearch.com/images/wustl/kaggle/tsp/world-tsp.png" alt="World Map">
In this Kaggle competition, your goal is not to find the shortest route among cities. Rather, you must attempt to determine the route labeled on a map.
The data for this competition is not made up of real-world maps, but rather randomly generated maps of varying attributes of size, city count, and optimality of the routes. The following image demonstrates a relatively small map, with few cities, and an optimal route.
https://data.heatonresearch.com/images/wustl/kaggle/tsp/1.jpg" alt="Small Map">
Not all maps are this small, or contain this optimal a route. Consider the following map, which is much larger.
https://data.heatonresearch.com/images/wustl/kaggle/tsp/6.jpg" alt="Larger Map">
The following attributes were randomly selected to generate each image.
The path distance is based on the sum of the Euclidean distance of all segments in the path. The distance units are in pixels.
This is a regression problem, you are to estimate the total path length. Several challenges to consider.
The following picture shows a section from one map zoomed to the pixel-level:
https://data.heatonresearch.com/images/wustl/kaggle/tsp/tsp_zoom.jpg" alt="TSP Zoom">
The following CSV files are provided, in addition to the images.
The tsp-all.csv file contains the following data.
id,filename,distance,key
0,0.jpg,83110,503x673-270-83110.jpg
1,1.jpg,1035,906x222-10-1035.jpg
2,2.jpg,20756,810x999-299-20756.jpg
3,3.jpg,13286,781x717-272-13286.jpg
4,4.jpg,13924,609x884-312-13924.jpg
The columns:
Facebook
Twitter
The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset.
All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders.
The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point.
The number of measurement points were distributed across participants as follows:
Participant 1 – 3 baseline, 6 treatment, 1 post-treatment
Participant 3 – 2 baseline, 7 treatment, 1 post-treatment
Participant 5 – 2 baseline, 5 treatment, 1 post-treatment
Participant 6 – 3 baseline, 4 treatment, 1 post-treatment
Participant 7 – 2 baseline, 5 treatment, 1 post-treatment
In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.
Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.
Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.
Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.
Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.
During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.
Age = age in ‘years, months’ at the start of the study
Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents)
Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.
The second part of the variable name refers to the task, as follows:
DC = dot comparison
SDC = single-digit computation
NLE_UT = number line estimation (untrained set)
NLE_T= number line estimation (trained set)
CE = multidigit computational estimation
NC = number comparison
The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).
Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.
Facebook
TwitterThe U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
Facebook
TwitterGLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product.
Facebook
TwitterSummary and methods used to calculate the physical characteristics used to compare the home range estimators.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
https://media.tenor.com/8rI9LFm_cs0AAAAM/imba.gif" alt="">
The "Russian Cities Distance Dataset" is a comprehensive collection of distance data between major cities in Stavropol region in Russia, designed to facilitate pathfinding and optimization tasks. This connected dataset includes information about the distances (in kilometres) between pairs of cities, allowing users to calculate the shortest paths and optimize routes for various purposes.
City Connections: The dataset provides connectivity information between all cities of the Stavropol region, making it an invaluable resource for route planning, navigation, and logistics optimization.
Distance Data: Each entry in the dataset includes the distance in kilometres between two cities. The distances have been curated to reflect the actual road or travel distances between these locations.
A* Search Algorithm: This dataset is ideal for use with the A* (A-star) search algorithm, a widely used optimization and pathfinding algorithm. The A* algorithm can help find the shortest and most efficient routes between cities, making it suitable for applications in transportation, tourism, and urban planning.
City Pairings: The dataset covers pairs of cities, enabling users to calculate the shortest paths and travel distances between any two cities included in the dataset.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Summary:
Estimated stand-off distance between ADS-B equipped aircraft and obstacles. Obstacle information was sourced from the FAA Digital Obstacle File and the FHWA National Bridge Inventory. Aircraft tracks were sourced from processed data curated from the OpenSky Network. Results are presented as histograms organized by aircraft type and distance away from runways.
Description:
For many aviation safety studies, aircraft behavior is represented using encounter models, which are statistical models of how aircraft behave during close encounters. They are used to provide a realistic representation of the range of encounter flight dynamics where an aircraft collision avoidance system would be likely to alert. These models currently and have historically have been limited to interactions between aircraft; they have not represented the specific interactions between obstacles and aircraft equipped transponders. In response, we calculated the standoff distance between obstacles and ADS-B equipped manned aircraft.
For robustness, this assessment considered two different datasets of manned aircraft tracks and two datasets of obstacles. For robustness, MIT LL calculated the standoff distance using two different datasets of aircraft tracks and two datasets of obstacles. This approach aligned with the foundational research used to support the ASTM F3442/F3442M-20 well clear criteria of 2000 feet laterally and 250 feet AGL vertically.
The two datasets of processed tracks of ADS-B equipped aircraft curated from the OpenSky Network. It is likely that rotorcraft were underrepresented in these datasets. There were also no considerations for aircraft equipped only with Mode C or not equipped with any transponders. The first dataset was used to train the v1.3 uncorrelated encounter models and referred to as the “Monday” dataset. The second dataset is referred to as the “aerodrome” dataset and was used to train the v2.0 and v3.x terminal encounter model. The Monday dataset consisted of 104 Mondays across North America. The other dataset was based on observations at least 8 nautical miles within Class B, C, D aerodromes in the United States for the first 14 days of each month from January 2019 through February 2020. Prior to any processing, the datasets required 714 and 847 Gigabytes of storage. For more details on these datasets, please refer to "Correlated Bayesian Model of Aircraft Encounters in the Terminal Area Given a Straight Takeoff or Landing" and “Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling.”
Two different datasets of obstacles were also considered. First was point obstacles defined by the FAA digital obstacle file (DOF) and consisted of point obstacle structures of antenna, lighthouse, meteorological tower (met), monument, sign, silo, spire (steeple), stack (chimney; industrial smokestack), transmission line tower (t-l tower), tank (water; fuel), tramway, utility pole (telephone pole, or pole of similar height, supporting wires), windmill (wind turbine), and windsock. Each obstacle was represented by a cylinder with the height reported by the DOF and a radius based on the report horizontal accuracy. We did not consider the actual width and height of the structure itself. Additionally, we only considered obstacles at least 50 feet tall and marked as verified in the DOF.
The other obstacle dataset, termed as “bridges,” was based on the identified bridges in the FAA DOF and additional information provided by the National Bridge Inventory. Due to the potential size and extent of bridges, it would not be appropriate to model them as point obstacles; however, the FAA DOF only provides a point location and no information about the size of the bridge. In response, we correlated the FAA DOF with the National Bridge Inventory, which provides information about the length of many bridges. Instead of sizing the simulated bridge based on horizontal accuracy, like with the point obstacles, the bridges were represented as circles with a radius of the longest, nearest bridge from the NBI. A circle representation was required because neither the FAA DOF or NBI provided sufficient information about orientation to represent bridges as rectangular cuboid. Similar to the point obstacles, the height of the obstacle was based on the height reported by the FAA DOF. Accordingly, the analysis using the bridge dataset should be viewed as risk averse and conservative. It is possible that a manned aircraft was hundreds of feet away from an obstacle in actuality but the estimated standoff distance could be significantly less. Additionally, all obstacles are represented with a fixed height, the potentially flat and low level entrances of the bridge are assumed to have the same height as the tall bridge towers. The attached figure illustrates an example simulated bridge.
It would had been extremely computational inefficient to calculate the standoff distance for all possible track points. Instead, we define an encounter between an aircraft and obstacle as when an aircraft flying 3069 feet AGL or less comes within 3000 feet laterally of any obstacle in a 60 second time interval. If the criteria were satisfied, then for that 60 second track segment we calculate the standoff distance to all nearby obstacles. Vertical separation was based on the MSL altitude of the track and the maximum MSL height of an obstacle.
For each combination of aircraft track and obstacle datasets, the results were organized seven different ways. Filtering criteria were based on aircraft type and distance away from runways. Runway data was sourced from the FAA runways of the United States, Puerto Rico, and Virgin Islands open dataset. Aircraft type was identified as part of the em-processing-opensky workflow.
License
This dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0).
This license requires that reusers give credit to the creator. It allows reusers to copy and distribute the material in any medium or format in unadapted form and for noncommercial purposes only. Only noncommercial use of your work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. Exceptions are given for the not for profit standards organizations of ASTM International and RTCA.
MIT is releasing this dataset in good faith to promote open and transparent research of the low altitude airspace. Given the limitations of the dataset and a need for more research, a more restrictive license was warranted. Namely it is based only on only observations of ADS-B equipped aircraft, which not all aircraft in the airspace are required to employ; and observations were source from a crowdsourced network whose surveillance coverage has not been robustly characterized.
As more research is conducted and the low altitude airspace is further characterized or regulated, it is expected that a future version of this dataset may have a more permissive license.
Distribution Statement
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
© 2021 Massachusetts Institute of Technology.
Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.
This document is derived from work done for the FAA (and possibly others); it is not the direct product of work done for the FAA. The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The "Indian Cities Distance Dataset" is a comprehensive collection of distance data between major cities in India, designed to facilitate pathfinding and optimization tasks.
This connected dataset includes information about the distances (in kilometres) between pairs of cities, allowing users to calculate the shortest paths and optimize routes for various purposes.
City Pairings: The dataset provides connectivity information between pairs of prominent Indian cities, enabling users to calculate the shortest paths and travel distances between any two cities included in the dataset. It is an excellent resource for delving into programming route planning, navigation, and logistics optimization programs.
Distance Data: Each entry in the dataset includes the distance in kilometres between two cities. The distances have been curated to reflect the actual road distances between these locations.
A* Search Algorithm: This dataset is ideal for use with the A* (A-star) search algorithm, a widely used optimization and pathfinding algorithm. The A* algorithm can help find the shortest and most efficient routes between cities, making it suitable for transportation, tourism, and urban planning applications.
Beginner friendly: This dataset contains a minimum number of features for better processing and analyzing of data making it suitable for beginners.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
This mmWave Datasets are used for fitness activity identification. This dataset (FA Dataset) contains 14 common fitness daily activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.
Format: .png format
Section 1: Device Configuration
Section 2: Data Format
We provide our mmWave data in heatmaps for this dataset. The data file is in the png format. The details are shown in the following:
Section 3: Experimental Setup
Section 4: Data Description
14 common daily activities and their corresponding files
File Name Activity Type File Name Activity Type
FA1 Crunches FA8 Squats
FA2 Elbow plank and reach FA9 Burpees
FA3 Leg raise FA10 Chest squeezes
FA4 Lunges FA11 High knees
FA5 Mountain climber FA12 Side leg raise
FA6 Punches FA13 Side to side chops
FA7 Push ups FA14 Turning kicks
Section 5: Raw Data and Data Processing Algorithms
Section 6: Citations
If your paper is related to our works, please cite our papers as follows.
https://ieeexplore.ieee.org/document/9868878/
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.
Bibtex:
@inproceedings{xie2022mmfit,
title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},
pages={1--10},
year={2022},
organization={IEEE}
}
Facebook
Twitterhttps://www.nist.gov/open/licensehttps://www.nist.gov/open/license
The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.
Facebook
TwitterThis is the dataset released as companion for the paper “Explaining the Product Range Effect in Purchase Data“, presented at the BigData 2013 conference.
Pennacchioli, D., Coscia, M., Rinzivillo, S., Pedreschi, D. and Giannotti, F., Explaining the Product Range Effect in Purchase Data. In BigData, 2013.
Foto von Eduardo Soares auf Unsplash
Facebook
TwitterThe exercise after this contains questions that are based on the housing dataset.
How many houses have a waterfront? a. 21000 b. 21450 c. 163 d. 173
How many houses have 2 floors? a. 2692 b. 8241 c. 10680 d. 161
How many houses built before 1960 have a waterfront? a. 80 b. 7309 c. 90 d. 92
What is the price of the most expensive house having more than 4 bathrooms? a. 7700000 b. 187000 c. 290000 d. 399000
For instance, if the ‘price’ column consists of outliers, how can you make the data clean and remove the redundancies? a. Calculate the IQR range and drop the values outside the range. b. Calculate the p-value and remove the values less than 0.05. c. Calculate the correlation coefficient of the price column and remove the values less than the correlation coefficient. d. Calculate the Z-score of the price column and remove the values less than the z-score.
What are the various parameters that can be used to determine the dependent variables in the housing data to determine the price of the house? a. Correlation coefficients b. Z-score c. IQR Range d. Range of the Features
If we get the r2 score as 0.38, what inferences can we make about the model and its efficiency? a. The model is 38% accurate, and shows poor efficiency. b. The model is showing 0.38% discrepancies in the outcomes. c. Low difference between observed and fitted values. d. High difference between observed and fitted values.
If the metrics show that the p-value for the grade column is 0.092, what all inferences can we make about the grade column? a. Significant in presence of other variables. b. Highly significant in presence of other variables c. insignificance in presence of other variables d. None of the above
If the Variance Inflation Factor value for a feature is considerably higher than the other features, what can we say about that column/feature? a. High multicollinearity b. Low multicollinearity c. Both A and B d. None of the above
Facebook
TwitterAccurate representation of stream networks at various scales in a hydrogeologic system is integral to modeling groundwater-stream interactions at the continental scale. To assess the accurate representation of stream networks, the distance of a point on the land surface to the nearest stream (DS) has been calculated. DS was calculated from the 30-meter Multi Order Hydrologic Position (MOHP) raster datasets for 18 watersheds in the United States that have been prioritized for intensive monitoring and assessment by the U.S. Geological Survey. DS was calculated by multiplying the 30-meter MOHP Lateral Position (LP) datasets by the 30-meter MOHP Distance from Stream Divide (DSD) datasets for stream orders one through five. DS was calculated for the purposes of considering the spatial scale needed for accurate representation of groundwater-stream interaction at the continental scale for a grid with 1-kilometer cell spacing. The data are available as Comma-Separated Value formatted files.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset is synthetically generated to simulate realistic operational data from electric two-wheelers. It includes common parameters such as vehicle speed, battery voltage, current, state of charge, motor and ambient temperatures, regenerative braking status, and trip duration.
The feature distributions are designed to mimic real-world driving behavior and environmental conditions typically observed in urban commuting scenarios for electric scooters and bikes.
The dataset is primarily intended for machine learning tasks such as EV range prediction, regression modeling, exploratory data analysis (EDA), and educational purposes.
This can serve as a baseline dataset for practicing predictive modeling workflows, building dashboards, or testing data visualization techniques.
Facebook
TwitterIndividual percentages, median fluorescent intensities and concentrations for each horse that were used to generate figure graphs are compiled in labeled data tables. (A) Percentage of IgE+ monocytes out of total cells in unsorted, MACS sorted and MACS+FACS sorted samples from 18 different horses in Fig 2D. (B) Percentage of CD23- cells out of total IgE+ monocytes in Fig 3D. (C) Clinical scores of allergic in in Fig 4A. (D) Percentage of IgE+ monocytes out of total monocytes in Fig 4C. (E) Percentage of CD16+ cells out of total IgE+ monocytes in Fig 4D. (F) Serum total IgE (ng/ml) measured by bead-based assay in Fig 5A. (G) IgE median fluorescent intensity (MFI) of IgE mAb 176 (Alexa Fluor 488) on IgE+ monocytes in Fig 5B. (H) Combined serum total IgE and IgE MFI on IgE+ monocytes in Fig 5C. (I) Percentage of monocytes out of total IgE+ cells in Fig 6A. (J) Secreted concentration of IL-10 (pg/ml), IL-4 (pg/ml), IFN? (MFI) and IL-17A (MFI) as measured by bead-based assay in Fig 6B. (K) Percentage of CD16+ cells out of total IgE- CD14+ monocytes. B-H,K show allergic (n = 7) and nonallergic (n = 7) horses, J shows allergic (n = 8) and nonallergic (n = 8) horses in October 2019. C-H,K show data points collected from April 2018-March 2019. (XLSX)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset and codes for "Observation of Acceleration and Deceleration Periods at Pine Island Ice Shelf from 1997–2023 "
The MATLAB codes and related datasets are used for generating the figures for the paper "Observation of Acceleration and Deceleration Periods at Pine Island Ice Shelf from 1997–2023".
Files and variables
File 1: Data_and_Code.zip
Directory: Main_function
**Description:****Include MATLAB scripts and functions. Each script include discriptions that guide the user how to used it and how to find the dataset that used for processing.
MATLAB Main Scripts: Include the whole steps to process the data, output figures, and output videos.
Script_1_Ice_velocity_process_flow.m
Script_2_strain_rate_process_flow.m
Script_3_DROT_grounding_line_extraction.m
Script_4_Read_ICESat2_h5_files.m
Script_5_Extraction_results.m
MATLAB functions: Five Files that includes MATLAB functions that support the main script:
1_Ice_velocity_code: Include MATLAB functions related to ice velocity post-processing, includes remove outliers, filter, correct for atmospheric and tidal effect, inverse weited averaged, and error estimate.
2_strain_rate: Include MATLAB functions related to strain rate calculation.
3_DROT_extract_grounding_line_code: Include MATLAB functions related to convert range offset results output from GAMMA to differential vertical displacement and used the result extract grounding line.
4_Extract_data_from_2D_result: Include MATLAB functions that used for extract profiles from 2D data.
5_NeRD_Damage_detection: Modified code fom Izeboud et al. 2023. When apply this code please also cite Izeboud et al. 2023 (https://www.sciencedirect.com/science/article/pii/S0034425722004655).
6_Figure_plotting_code:Include MATLAB functions related to Figures in the paper and support information.
Director: data_and_result
Description:**Include directories that store the results output from MATLAB. user only neeed to modify the path in MATLAB script to their own path.
1_origin : Sample data ("PS-20180323-20180329", “PS-20180329-20180404”, “PS-20180404-20180410”) output from GAMMA software in Geotiff format that can be used to calculate DROT and velocity. Includes displacment, theta, phi, and ccp.
2_maskccpN: Remove outliers by ccp < 0.05 and change displacement to velocity (m/day).
3_rockpoint: Extract velocities at non-moving region
4_constant_detrend: removed orbit error
5_Tidal_correction: remove atmospheric and tidal induced error
6_rockpoint: Extract non-aggregated velocities at non-moving region
6_vx_vy_v: trasform velocities from va/vr to vx/vy
7_rockpoint: Extract aggregated velocities at non-moving region
7_vx_vy_v_aggregate_and_error_estimate: inverse weighted average of three ice velocity maps and calculate the error maps
8_strain_rate: calculated strain rate from aggregate ice velocity
9_compare: store the results before and after tidal correction and aggregation.
10_Block_result: times series results that extrac from 2D data.
11_MALAB_output_png_result: Store .png files and time serties result
12_DROT: Differential Range Offset Tracking results
13_ICESat_2: ICESat_2 .h5 files and .mat files can put here (in this file only include the samples from tracks 0965 and 1094)
14_MODIS_images: you can store MODIS images here
shp: grounding line, rock region, ice front, and other shape files.
File 2 : PIG_front_1947_2023.zip
Includes Ice front positions shape files from 1947 to 2023, which used for plotting figure.1 in the paper.
File 3 : PIG_DROT_GL_2016_2021.zip
Includes grounding line positions shape files from 1947 to 2023, which used for plotting figure.1 in the paper.
Data was derived from the following sources:
Those links can be found in MATLAB scripts or in the paper "**Open Research" **section.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Distance Calculation is a dataset for object detection tasks - it contains Vehicles annotations for 4,056 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).