100+ datasets found
  1. H

    DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and...

    • data.niaid.nih.gov
    pdf +1
    Updated May 30, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sidney Atwood (2012). DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and standard errors from birth histories [Dataset]. http://doi.org/10.7910/DVN/OLI0ID
    Explore at:
    pdf, text/x-sas-syntax; charset=us-asciiAvailable download formats
    Dataset updated
    May 30, 2012
    Dataset provided by
    Research Core, Division of Global Health Equity, Brigham & Women's Hospital
    Authors
    Sidney Atwood
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    global
    Description

    This SAS macro generates childhood mortality estimates (neonatal, post-neonatal, infant (1q0), child (4q1) and under-five (5q0) mortality) and standard errors based on birth histories reported by women during a household survey. We have made the SAS macro flexible enough to accommodate a range of calculation specifications including multi-stage sampling frames, and simple random samples or censuses. Childhood mortality rates are the component death probabilities of dying before a specific age. This SAS macro is based on a macro built by Keith Purvis at MeasureDHS. His method is described in Estimating Sampling Errors of Means, Total Fertility, and Childhood Mortality Rates Using SAS (www.measuredhs.com/pubs/pdf/OD17/OD17.pdf, section 4). More information about Childhood Mortality Estimation can also be found in the Guide to DHS Statistics (www.measuredhs.com/pubs/pdf/DHSG1/Guide_DHS_Statistics.pdf, page 93). We allow the user to specify whether childhood mortality calculations should be based on 5 or 10 years of birth histories, when the birth history window ends, and how to handle age of death with it is reported in whole months (rather than days). The user can also calculate mortality rates within sub-populations, and take account of a complex survey design (unequal probability and cluster samples). Finally, this SAS program is designed to read data in a number of different formats.

  2. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  3. c

    Global Subnational Infant Mortality Rates, Version 2.01

    • s.cnmilf.com
    • datasets.ai
    • +3more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Subnational Infant Mortality Rates, Version 2.01 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/global-subnational-infant-mortality-rates-version-2-01-a5279
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.

  4. d

    SHMI primary diagnosis coding contextual indicators

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SHMI primary diagnosis coding contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2025-02
    Explore at:
    pdf(231.3 kB), csv(9.0 kB), xlsx(50.5 kB), xlsx(76.9 kB), xlsx(50.4 kB), csv(9.3 kB), pdf(228.8 kB)Available download formats
    Dataset updated
    Feb 13, 2025
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Oct 1, 2023 - Sep 30, 2024
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. Information on the main condition the patient is in hospital for (the primary diagnosis) is used to calculate the expected number of deaths used in the calculation of the SHMI. A high percentage of records with an invalid primary diagnosis may indicate a data quality problem. A high percentage of records with a primary diagnosis which is a symptom or sign may indicate problems with data quality or timely diagnosis of patients, but may also reflect the case-mix of patients or the service model of the trust (e.g. a high level of admissions to acute admissions wards for assessment and stabilisation). Contextual indicators on the percentage of provider spells with an invalid primary diagnosis and the percentage of provider spells with a primary diagnosis which is a symptom or sign are produced to support the interpretation of the SHMI. Notes: 1. On 1st January 2025, North Middlesex University Hospital NHS Trust (trust code RAP) was acquired by Royal Free London NHS Foundation Trust (trust code RAL). Due to processing issues, we are currently producing separate indicator values for these trusts in the SHMI data. Data for the merged organisation will be produced at a future date. 2. There is a shortfall in the number of records for Kingston and Richmond NHS Foundation Trust (trust code RAX), North Middlesex University Hospital NHS Trust (trust code RAP), Northumbria Healthcare NHS Foundation Trust (trust code RTF), The Rotherham NHS Foundation Trust (trust code RFR), and The Shrewsbury and Telford Hospital NHS Trust (trust code RXW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.

  5. Survey variables needed to calculate fertility and childhood mortality...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahmoud Elkasabi (2023). Survey variables needed to calculate fertility and childhood mortality rates. [Dataset]. http://doi.org/10.1371/journal.pone.0216403.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Mahmoud Elkasabi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Survey variables needed to calculate fertility and childhood mortality rates.

  6. NCHS - Childhood Mortality Rates

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Childhood Mortality Rates [Dataset]. https://catalog.data.gov/dataset/nchs-childhood-mortality-rates
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Age groups for childhood death rates are based on age at death. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  7. Standardised excess mortality levels during the COVID-19 outbreak

    • data.europa.eu
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santé publique France, Standardised excess mortality levels during the COVID-19 outbreak [Dataset]. https://data.europa.eu/data/datasets/5ea7eaf11739179063ca0847?locale=en
    Explore at:
    csv(294), csv(3448), csv(20080), csv(158)Available download formats
    Dataset authored and provided by
    Santé publique France
    License

    https://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence

    Description

    The actions of Public Health France

    Public Health France’s mission is to improve and protect the health of populations. During the health crisis linked to the COVID-19 epidemic, Public Health France is responsible for monitoring and understanding the dynamics of the epidemic, anticipating the various scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory.

    Description of the dataset

    This dataset describes the level of standardised excess mortality during the COVID-19 outbreak, at the departmental and regional level.

    The level of excess mortality is described for two age categories: — for all ages; — for persons over 65 years of age.

    Method of calculating levels

    The data are derived from the administrative part of the death certificate, collected by the civil registry offices of the municipalities having a dematerialised transmission with INSEE. The observed number of deaths is compared to an expected number, estimated from a statistical model established by the EuroMomo consortium and used by 24 countries or regions in Europe.

    The estimation of excess deaths is based on the calculation of a standardised indicator (Z-score), which makes it possible to compare excesses between different geographical levels or age groups.

    The Z-score is calculated by the formula: (observed number — expected number)/standard deviation of expected number.

    The five categories of excess are defined as follows: — No excess: standardised Death Indicator (Z-score) < 2 — Moderate excess of death: standardised Death Indicator (Z-score) between 2 and 4.99 — High excess of death: standardised Death Indicator (Z-score) between 5 and 6.99: — Very high excess of death: standardised Death Indicator (Z-score) between 7 and 11.99: Exceptional excess of standardised death indicator of death (Z-score) greater than 12

    Limits of the calculation method

    The estimated excesses are established on a set of 3000 municipalities for which Santé publique France has a long history of data. These 3000 municipalities account for 77 % of national mortality, varying from 63 % to 96 % depending on the regions and from 42 % to 98 % depending on the departments.

    Taking into account the legal deadlines for declaring a death to civil status and the time taken by the civil registry office to enter the information, a period between the occurrence of the death and the arrival of the information at Santé publique France is observed. This period can be extended punctually (public holidays, extended weekends, bridges, school holidays, very strong epidemic period, confinement). Mortality data are considered consolidated within 30 days.

  8. NCHS - Infant Mortality Rates, by Race: United States, 1915-2013

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +6more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Infant Mortality Rates, by Race: United States, 1915-2013 [Dataset]. https://catalog.data.gov/dataset/nchs-infant-mortality-rates-by-race-united-states-1915-2013
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    All birth data by race before 1980 are based on race of the child; starting in 1980, birth data by race are based on race of the mother. Birth data are used to calculate infant mortality rate. https://www.cdc.gov/nchs/data-visualization/mortality-trends/

  9. f

    lillies: An R package for the estimation of excess Life Years Lost among...

    • figshare.com
    • plos.figshare.com
    pdf
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen (2020). lillies: An R package for the estimation of excess Life Years Lost among patients with a given disease or condition [Dataset]. http://doi.org/10.1371/journal.pone.0228073
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    PLOS ONE
    Authors
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life expectancy at a given age is a summary measure of mortality rates present in a population (estimated as the area under the survival curve), and represents the average number of years an individual at that age is expected to live if current age-specific mortality rates apply now and in the future. A complementary metric is the number of Life Years Lost, which is used to measure the reduction in life expectancy for a specific group of persons, for example those diagnosed with a specific disease or condition (e.g. smoking). However, calculation of life expectancy among those with a specific disease is not straightforward for diseases that are not present at birth, and previous studies have considered a fixed age at onset of the disease, e.g. at age 15 or 20 years. In this paper, we present the R package lillies (freely available through the Comprehensive R Archive Network; CRAN) to guide the reader on how to implement a recently-introduced method to estimate excess Life Years Lost associated with a disease or condition that overcomes these limitations. In addition, we show how to decompose the total number of Life Years Lost into specific causes of death through a competing risks model, and how to calculate confidence intervals for the estimates using non-parametric bootstrap. We provide a description on how to use the method when the researcher has access to individual-level data (e.g. electronic healthcare and mortality records) and when only aggregated-level data are available.

  10. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k
    Explore at:
    application/rdfxml, xml, csv, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

  11. NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  12. g

    Infant Mortality Rate

    • globalmidwiveshub.org
    • global-midwives-hub-directrelief.hub.arcgis.com
    • +1more
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2021). Infant Mortality Rate [Dataset]. https://www.globalmidwiveshub.org/datasets/infant-mortality-rate
    Explore at:
    Dataset updated
    Jun 1, 2021
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    The probability of dying between birth and the exact age of 1, expressed per 1,000 live births. The data is sorted by both sex and total and includes a range of values from 1900 to 2019. The calculation for infant mortality rates is derived from a standard period abridged life table using the age-specific deaths and mid-year population counts from civil registration data. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.

  13. Global Subnational Infant Mortality Rates, Version 2.01 - Dataset - NASA...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global Subnational Infant Mortality Rates, Version 2.01 - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/global-subnational-infant-mortality-rates-version-2-01
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.

  14. s

    Death Rate Calculation - Datasets - Falkland Islands Data Portal

    • dataportal.saeri.org
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Death Rate Calculation - Datasets - Falkland Islands Data Portal [Dataset]. https://dataportal.saeri.org/dataset/death-rate-calculation
    Explore at:
    Dataset updated
    May 29, 2024
    Area covered
    Falkland Islands (Islas Malvinas)
    Description

    Contains equation used to calculate death rates for farms. Data held within the Department of Agriculture

  15. Z

    Russian Short-Term Mortality Fluctuations database

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jdanov, Dmitri (2023). Russian Short-Term Mortality Fluctuations database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10280663
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Churilova, Elena
    Shchur, Aleksey
    Rodina, Olga
    Timonin, Sergei
    Sergeev, Egor
    Jdanov, Dmitri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Database contents The Russian Short-Term Mortality Fluctuations database (RusSTMF) contains a series of standardized and crude death rates for men, women and both sexes for Russia as a whole and its regions for the period from 2000 to 2021. All the output indicators presented in the database are calculated based on data of deaths registered by the Vital Registry Office. The weekly death counts are calculated based on depersonalized individual data provided by the Russian Federal State Statistics Service (Rosstat) at the request of the HSE. Time coverage: 03.01.2000 (Week 1) – 31.12.2021 (Week 1148)
    2. A brief description of the input data on deaths Date of death: date of occurrence Unit of time: week First and last days of the week: Monday – Sunday First and last week of the year: The weeks are organized according to ISO 8601:2004 guidelines. Each week of the year, including the first and last, contains 7 days. In order to get 7-day weeks, the days of previous years are included in this first week (if January 1 fell on Tuesday, Wednesday or Thursday) or in the last calendar week (if December 31 fell on Thursday, Friday or Saturday). Age groups: the entire population Sex: men, women, both sexes (men and women combined) Restrictions and data changes: data on deaths in the Pskov region were excluded for weeks 9-13 of 2012 Note: Deaths with an unknown date of occurrence (unknown year, month, or day) account for about 0.3% of all deaths and are excluded from the calculation of week-age-specific and standardized death rates.
    3. Description of the week-specific mortality rates data file Week-specific standardized death rates for Russia as a whole and its regions are contained in a single data file presented in .csv format. The format of data allows its uploading into any system for statistical analysis. Each record (row) in the data file contains data for one calendar year, one week, one territory, one sex. The decimal point is dot (.) The first element of the row is the territory code ("PopCode" column), the second element is the year ("Year" column), the third element ("Week" column) is the week of the year, the fourth element ("Sex" column) is sex (F – female, M – male, B – both sexes combined). This is followed by a column "CDR" with the value of the crude death rate and "SDR" with the value of the standardized death rate. If the indicator cannot be calculated for some combination of year, sex, and territory, then the corresponding meaningful data elements in the data file are replaced with ".".
  16. NCHS - Potentially Excess Deaths from the Five Leading Causes of Death

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Potentially Excess Deaths from the Five Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-potentially-excess-deaths-from-the-five-leading-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.

  17. u

    Baseline mortality rates used to calculate racial-ethnic disparities of air...

    • rdr.ucl.ac.uk
    xlsx
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karn Vohra; Eloise Marais (2025). Baseline mortality rates used to calculate racial-ethnic disparities of air pollution from major oil and gas lifecycle stages in the United States [Dataset]. http://doi.org/10.5522/04/29424656.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    University College London
    Authors
    Karn Vohra; Eloise Marais
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Excel workbook of age-standardised baseline mortality rates (BMRs) for each US county by race and ethnicity used for calculating racial-ethnic disparities in health burdens for air pollution from the major oil and gas lifecycle stages in the United States.The workbook includes 3 sheets:BMRs for all-cause mortality in 25+ years population for calculating premature mortality from exposure to fine particular matter (PM2.5).BMRs for all-cause mortality in 65+ years population for calculating premature mortality from exposure to nitrogen dioxide (NO2), andBMRs for all-ages chronic obstructive pulmonary disease (COPD) mortality from exposure to ozone air pollution.Raw BMRs from the US US Centers for Disease Control and Prevention Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER) are processed to gap fill data not reported at the county level. This data gap filling is detailed in Vohra et al. (2025) Science Advances, "The health burden and racial-ethnic disparities of air pollution from the major oil and gas lifecycle stages in the United States", doi:10.1126/sciadv.adu2241.

  18. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  19. d

    Infant Mortality

    • catalog.data.gov
    • data.cityofnewyork.us
    • +3more
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Infant Mortality [Dataset]. https://catalog.data.gov/dataset/infant-mortality
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016 Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.

  20. f

    Table_1_Why Does Child Mortality Decrease With Age? Modeling the...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Table_1_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 25 Countries.XLSX [Dataset]. http://doi.org/10.3389/fped.2021.657298.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Our previous study analyzed the age trajectory of mortality (ATM) in 14 European countries, while this study aimed at investigating ATM in other continents and in countries with a higher level of mortality. Data from 11 Non-European countries were used.Methods: The number of deaths was extracted from the WHO mortality database. The Halley method was used to calculate the mortality rates in all possible calendar years and all countries combined. This method enables us to combine more countries and more calendar years in one hypothetical population.Results: The age trajectory of total mortality (ATTM) and also ATM due to specific groups of diseases were very similar in the 11 non-European countries and in the 14 European countries. The level of mortality did not affect the main results found in European countries. The inverse proportion was valid for ATTM in non-European countries with two exceptions.Slower or no mortality decrease with age was detected in the first year of life, while the inverse proportion model was valid for the age range (1, 10) years in most of the main chapters of ICD10.Conclusions: The decrease in child mortality with age may be explained as the result of the depletion of individuals with congenital impairment. The majority of deaths up to the age of 10 years were related to congenital impairments, and the decrease in child mortality rate with age was a demonstration of population heterogeneity. The congenital impairments were latent and may cause death even if no congenital impairment was detected.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sidney Atwood (2012). DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and standard errors from birth histories [Dataset]. http://doi.org/10.7910/DVN/OLI0ID

DHS_U5M: A flexible SAS macro to calculate childhood mortality estimates and standard errors from birth histories

Explore at:
pdf, text/x-sas-syntax; charset=us-asciiAvailable download formats
Dataset updated
May 30, 2012
Dataset provided by
Research Core, Division of Global Health Equity, Brigham & Women's Hospital
Authors
Sidney Atwood
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Area covered
global
Description

This SAS macro generates childhood mortality estimates (neonatal, post-neonatal, infant (1q0), child (4q1) and under-five (5q0) mortality) and standard errors based on birth histories reported by women during a household survey. We have made the SAS macro flexible enough to accommodate a range of calculation specifications including multi-stage sampling frames, and simple random samples or censuses. Childhood mortality rates are the component death probabilities of dying before a specific age. This SAS macro is based on a macro built by Keith Purvis at MeasureDHS. His method is described in Estimating Sampling Errors of Means, Total Fertility, and Childhood Mortality Rates Using SAS (www.measuredhs.com/pubs/pdf/OD17/OD17.pdf, section 4). More information about Childhood Mortality Estimation can also be found in the Guide to DHS Statistics (www.measuredhs.com/pubs/pdf/DHSG1/Guide_DHS_Statistics.pdf, page 93). We allow the user to specify whether childhood mortality calculations should be based on 5 or 10 years of birth histories, when the birth history window ends, and how to handle age of death with it is reported in whole months (rather than days). The user can also calculate mortality rates within sub-populations, and take account of a complex survey design (unequal probability and cluster samples). Finally, this SAS program is designed to read data in a number of different formats.

Search
Clear search
Close search
Google apps
Main menu