Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2000 CDC growth charts are based on national data collected between 1963 and 1994 and include a set of selected percentiles between the 3rd and 97th and LMS parameters that can be used to obtain other percentiles and associated z-scores. Obesity is defined as a sex- and age-specific body mass index (BMI) at or above the 95th percentile. Extrapolating beyond the 97th percentile is not recommended and leads to compressed z-score values. This study attempts to overcome this limitation by constructing a new method for calculating BMI distributions above the 95th percentile using an extended reference population. Data from youth at or above the 95th percentile of BMI-for-age in national surveys between 1963 and 2016 were modelled as half-normal distributions. Scale parameters for these distributions were estimated at each sex-specific 6-month age-interval, from 24 to 239 months, and then smoothed as a function of age using regression procedures. The modelled distributions above the 95th percentile can be used to calculate percentiles and non-compressed z-scores for extreme BMI values among youth. This method can be used, in conjunction with the current CDC BMI-for-age growth charts, to track extreme values of BMI among youth.
http://geospatial-usace.opendata.arcgis.com/datasets/4a170b34bced4d06a0ba41cbab51a2af/license.jsonhttp://geospatial-usace.opendata.arcgis.com/datasets/4a170b34bced4d06a0ba41cbab51a2af/license.json
A sieve analysis (or gradation test) is a practice or procedure commonly used in civil engineering to assess the particle size distribution (also called gradation) of a granular material.
As part of the Sediment Analysis and Geo-App (SAGA) a series of data processing web services are available to assist in computing sediment statistics based on results of sieve analysis. The Standard Deviation first computes the percentiles for D5, D16, D35, D84,D95 and then uses the formula, (D16-D84)/4)+(D5-D95)/6
Percentiles can also be computed for classification sub-groups: Overall (OVERALL), <62.5 um (DS_FINE), 62.5-250um (DS_MED), and > 250um (DS_COARSE)
Parameter #1: Input Sieve Size, Percent Passing, Sieve Units.
Parameter #2: Subgroup
Parameter #3: Outunits
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
Rent estimates at the 50th percentile (or median) are calculated for all Fair Market Rent areas. Fair Market Rents (FMRs) are primarily used to determine payment standard amounts for the Housing Choice Voucher program, to determine initial renewal rents for some expiring project-based Section 8 contracts, to determine initial rents for housing assistance payment (HAP) contracts in the Moderate Rehabilitation Single Room Occupancy program (Mod Rehab), and to serve as a rent ceiling in the HOME rental assistance program. FMRs are gross rent estimates. They include the shelter rent plus the cost of all tenant-paid utilities, except telephones, cable or satellite television service, and internet service. The U.S. Department of Housing and Urban Development (HUD) annually estimates FMRs for 530 metropolitan areas and 2,045 nonmetropolitan county FMR areas. Under certain conditions, as set forth in the Interim Rule (Federal Register Vol. 65, No. 191, Monday October 2, 2000, pages 58870-58875), these 50th percentile rents can be used to set success rate payment standards.
https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4068https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4068
This dataset demonstrates the difference in calculating percentile Intervals as approximation for Highest Density Intervals (HDI) vs. Highest Posterior Density (HPD). This is demonstrated with extended partial liver resection data (ZeLeR-study, ethical vote: 2018-1246-Material). The data includes Computed Tomography (CT) liver volume measurements of patients before (POD 0) and after partial hepatectomy. Liver volume was normalized per patient to the preoperative liver volume. was used to screen the liver regeneration courses. The Fujifilm Synapse3D software was used to calculate volume estimates from CT images. The data is structured in a tabular separated value file of the PEtab format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The di5 stage is a 5 layer image with the 5, 50 and 95 percentiles of the beta distribution calculated using the statistics from the mean and standard deviation from the time series image stack. This is a more robust version of the minimum, mean and maximum since the statistics are calculated from the entire time series for the specified time interval. ; ; Layers are:; 5th percentile (band 1), 50th percentile (band2), 95th percentile (band 3), standard deviation (band 4), number of observations (band 5).; ; The input timeseries images are bare fractional cover images (stage die) masked for water, cloud and cloud shadow. ; ; Scaling for layers 1-3 is Percentile = DN -100; Layers 4 & 5 are not scaled; ; Images is 8 bit unsigned integer; ; this layer is created for the LMD CMA at this time.
This indicator represents the tracts ranked by their percentile level of median household incomes per census tract, per capita income. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.
Official GMAT Focus Edition section scores (Quantitative, Verbal, and Data Insights) to percentile conversion tables for scores ranging from 60 to 90
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Rent estimates at the 50th percentile (or median) are calculated for all Fair Market Rent areas. THESE ARE NOT FAIR MARKET RENTS. Under certain conditions, as set forth in the Interim Rule (Federal Register Vol. 65, No. 191, Monday October 2, 2000, pages 58870-58875), these 50th percentile rents can be used to set success rate payment standards. FY2009-FY2012. Note that data included herein are aggregated from individual files listed in main URL field below.
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
https://opensource.org/license/MIThttps://opensource.org/license/MIT
Algorithm (.php) for retrieving the co-citation set of a scholarly output by DOI, and calculating CPR for it. Configuration, database operations and input sanitizing code omitted. Also, example data and statistical analyses used in Seppänen et al (2020). For context see: Seppänen et al (2020): Co-Citation Percentile Rank and JYUcite: a new network-standardized output-level citation influence metric https://oscsolutions.cc.jyu.fi/jyucite
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains anthropometric data for 50th percentile U.S. male. This data has been used to calculate dimensions of truncated ellipsoidal finite element segments.
The Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration (PGA) values of the 2020 NEHRP Recommended Seismic Provisions and 2022 ASCE/SEI 7 Standard are derived from the downloadable data files. For each site class, the MCEG peak ground acceleration (PGA_M) is calculated via the following equation: PGA_M = min[ PGA_MUH, max( PGA_M84th , PGA_MDLL ) ] where PGA_MUH = uniform-hazard peak ground acceleration PGA_M84th = 84th-percentile peak ground acceleration PGA_MDLL = deterministic lower limit spectral acceleration
The Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration (PGA) values of the 2020 NEHRP Recommended Seismic Provisions and 2022 ASCE/SEI 7 Standard are derived from the downloadable data files. For each site class, the MCEG peak ground acceleration (PGA_M) is calculated via the following equation: PGA_M = min[ PGA_MUH, max( PGA_M84th , PGA_MDLL ) ] where PGA_MUH = uniform-hazard peak ground acceleration PGA_M84th = 84th-percentile peak ground acceleration PGA_MDLL = deterministic lower limit spectral acceleration
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
As a 90.P background value, that's 90. Percentile of a Data Collective. It is the value at which 90% of the cases observed so far have lower levels. The calculation is made after the data group of outliers has been cleaned up. The 90. The percentile often serves as the upper limit of the background range to delineate unusually high levels. The total content is determined from the aqua regia extract (according to DIN ISO 11466 (1997)). The concentration is given in mg/kg. The salary classes take into account, among other things, the pension values of the BBodSchV (1999). These are 30 mg/kg for sand, 60 mg/kg for clay, silt and very silty sand and 100 mg/kg for clay. According to LABO (2003) a sample count of >=20 is required for the calculation of background values. However, the map also shows groups with a sample count >= 10. This information is then only informal and not representative.
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThis dataset contains data captured from remote Power Quality logging devices currently available across 450 UK Power Network sites*. A weekly 95th percentile value per harmonic is calculated and the highest value of each harmonic amongst all weeks, over a period of 12 months (also applicable to THD) is shown.
Methodological Approach Power Quality data is collected from meters on a 10-minute basis and stored in a database. 95th percentile statistics are calculated on a weekly basis and used to generate the harmonics report.Year-week is the ISO 8601 year and week number.
Quality Control Statement The data is provided "as is".
Assurance Statement Harmonic data is periodically extracted and reviewed prior to publication.
Other Download dataset information: Metadata (JSON)
Definitions of key terms related to this dataset can be found in the Open Data Portal Glossary: https://ukpowernetworks.opendatasoft.com/pages/glossary/To view this data please register and login.
This processed data represents the estimated percentile level of noise energy from transportation. The data is from the U.S. Department of Transportation, Bureau of Transportation Statistics, National Transportation Noise Map, 2018. The census block data was converted into census tract data by the mean of the census blocks within a tract comprising the data associated with each tract. From there the percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Comprehensive tax calculation statistics table of various income amounts based on income percentile reporting. Unit: Amount (in thousand dollars)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2000 CDC growth charts are based on national data collected between 1963 and 1994 and include a set of selected percentiles between the 3rd and 97th and LMS parameters that can be used to obtain other percentiles and associated z-scores. Obesity is defined as a sex- and age-specific body mass index (BMI) at or above the 95th percentile. Extrapolating beyond the 97th percentile is not recommended and leads to compressed z-score values. This study attempts to overcome this limitation by constructing a new method for calculating BMI distributions above the 95th percentile using an extended reference population. Data from youth at or above the 95th percentile of BMI-for-age in national surveys between 1963 and 2016 were modelled as half-normal distributions. Scale parameters for these distributions were estimated at each sex-specific 6-month age-interval, from 24 to 239 months, and then smoothed as a function of age using regression procedures. The modelled distributions above the 95th percentile can be used to calculate percentiles and non-compressed z-scores for extreme BMI values among youth. This method can be used, in conjunction with the current CDC BMI-for-age growth charts, to track extreme values of BMI among youth.